Battery state of health estimation under dynamic operations with physics-driven deep learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123632
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
- Tang, Aihua & Huang, Yukun & Xu, Yuchen & Hu, Yuanzhi & Yan, Fuwu & Tan, Yong & Jin, Xin & Yu, Quanqing, 2024. "Data-physics-driven estimation of battery state of charge and capacity," Energy, Elsevier, vol. 294(C).
- Jiahuan Lu & Rui Xiong & Jinpeng Tian & Chenxu Wang & Fengchun Sun, 2023. "Deep learning to estimate lithium-ion battery state of health without additional degradation experiments," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
- Tang, Aihua & Huang, Yukun & Liu, Shangmei & Yu, Quanqing & Shen, Weixiang & Xiong, Rui, 2023. "A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models," Applied Energy, Elsevier, vol. 348(C).
- Li, Xining & Ju, Lingling & Geng, Guangchao & Jiang, Quanyuan, 2023. "Data-driven state-of-health estimation for lithium-ion battery based on aging features," Energy, Elsevier, vol. 274(C).
- Tang, Aihua & Jiang, Yihan & Nie, Yuwei & Yu, Quanqing & Shen, Weixiang & Pecht, Michael G., 2023. "Health and lifespan prediction considering degradation patterns of lithium-ion batteries based on transferable attention neural network," Energy, Elsevier, vol. 279(C).
- Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
- Lin, Cheng & Mu, Hao & Xiong, Rui & Shen, Weixiang, 2016. "A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm," Applied Energy, Elsevier, vol. 166(C), pages 76-83.
- Zhang, Cheng & Allafi, Walid & Dinh, Quang & Ascencio, Pedro & Marco, James, 2018. "Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique," Energy, Elsevier, vol. 142(C), pages 678-688.
- Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sun, Shukai & Che, Liang & Zhao, Ruifeng & Chen, Yizhe & Li, Ming, 2025. "Multi-task learning and voltage reconstruction-based battery degradation prediction under variable operating conditions of energy storage applications," Energy, Elsevier, vol. 317(C).
- Tao, Junjie & Wang, Shunli & Cao, Wen & Cui, Yixiu & Fernandez, Carlos & Guerrero, Josep M., 2024. "Innovative multiscale fusion – Antinoise extended long short-term memory neural network modeling for high precision state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 312(C).
- Wu, Yan & Wang, Tong & Zhu, Keming & Xu, Yingying & Ma, Haoyuan & Luo, Jiayuan & Tang, Xiaoyu & Huang, Yuqi, 2025. "Enhancing cross-temperature state-of-charge estimation accuracy for lithium-ion batteries using multi-physics features and physical guidance," Energy, Elsevier, vol. 333(C).
- Seo, Younggeon & Kim, Taeyi & Barde, Stephane, 2025. "Enhancing battery SOH prediction with Butler–Volmer informed neural networks in data-scarce environments," Energy, Elsevier, vol. 335(C).
- Yu, Quanqing & Nie, Yuwei & Guo, Shanshan & Li, Junfu & Zhang, Chengming, 2024. "Machine learning enables rapid state of health estimation of each cell within battery pack," Applied Energy, Elsevier, vol. 375(C).
- Bing Chen & Yongjun Zhang & Jinsong Wu & Hongyuan Yuan & Fang Guo, 2025. "Lithium-Ion Battery State of Health Estimation Based on Feature Reconstruction and Transformer-GRU Parallel Architecture," Energies, MDPI, vol. 18(5), pages 1-19, March.
- Wang, Yonggang & Yu, Yadong & Ma, Yuanchu & Shi, Jie, 2025. "Lithium-ion battery health state estimation based on improved snow ablation optimization algorithm-deep hybrid kernel extreme learning machine," Energy, Elsevier, vol. 323(C).
- Tao, Junjie & Wang, Shunli & Cao, Wen & Fernandez, Carlos & Blaabjerg, Frede & Cheng, Liangwei, 2025. "An innovative multitask learning - Long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current condi," Energy, Elsevier, vol. 314(C).
- Tang, Aihua & Xu, Yuchen & Tian, Jinpeng & Zou, Hang & Liu, Kailong & Yu, Quanqing, 2025. "Adaptive engineering-assisted deep learning for battery module health monitoring across dynamic operations," Energy, Elsevier, vol. 322(C).
- Zhang, Hong & Zhao, Yuxuan & Tian, Yu & Zhang, Yifan & Tao, Zhenyi & Xu, Shiqi, 2025. "Multi-level optimization of low-temperature heating methods for large-capacity lithium-ion batteries based on temperature uniformity," Energy, Elsevier, vol. 330(C).
- Liu, Yupeng & Yang, Lijun & Liao, Ruijin & Hu, Chengyu & Xiao, Yanlin & He, Chunwang & Wu, Xu & Zhang, Yuan & Li, Siquan, 2025. "Degradation mechanism of sodium-ion batteries and state of health estimation via electrochemical impedance spectroscopy under temperature disturbances," Energy, Elsevier, vol. 332(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
- Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
- Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
- Mei, Peng & Karimi, Hamid Reza & Xie, Jiale & Chen, Fei & Ou, Lei & Yang, Shichun & Huang, Cong, 2024. "Battery state estimation methods and management system under vehicle–cloud collaboration: A Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
- Wang, Yaxuan & Guo, Shilong & Cui, Yue & Deng, Liang & Zhao, Lei & Li, Junfu & Wang, Zhenbo, 2025. "A comprehensive review of machine learning-based state of health estimation for lithium-ion batteries: data, features, algorithms, and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
- Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
- Zhang, Zhen & Zhu, Yuhao & Gong, Yichang & Wang, Teng & Cui, Naxin & Shang, Yunlong, 2025. "Insight into the whole from the part: Redefined state of health for lithium-ion batteries based on optimal charging fragment search," Energy, Elsevier, vol. 320(C).
- Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
- S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
- Feng, Xinhong & Zhang, Yongzhi & Xiong, Rui & Wang, Chun, 2024. "Comprehensive performance comparison among different types of features in data-driven battery state of health estimation," Applied Energy, Elsevier, vol. 369(C).
- Son, Donghee & Song, Youngbin & Park, Shina & Oh, Junseok & Kim, Sang Woo, 2025. "Online state-of-charge and capacity co-estimation for lithium-ion batteries under aging and varying temperatures," Energy, Elsevier, vol. 316(C).
- Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
- Tang, Aihua & Xu, Yuchen & Tian, Jinpeng & Zou, Hang & Liu, Kailong & Yu, Quanqing, 2025. "Adaptive engineering-assisted deep learning for battery module health monitoring across dynamic operations," Energy, Elsevier, vol. 322(C).
- Lin, Zichang & Wang, Feng & Zhang, Haoxiang & Xu, Bing, 2024. "Extending battery lifetime of electric-hydraulic hybrid wheel loader through system parameter optimization," Energy, Elsevier, vol. 313(C).
- Jin, Zhaorui & Fu, Shiyi & Fan, Hongtao & Tao, Yulin & Dong, Yachao & Wang, Yu & Sun, Yaojie, 2025. "Edge-cloud collaborative method for state of charge estimation of lithium-ion batteries by combining Kalman filter and deep learning," Energy, Elsevier, vol. 332(C).
- Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
- Zhao, Xuyang & He, Hongwen & Wei, Zhongbao & Huang, Ruchen & Yue, Hongwei & Guo, Xuncheng, 2025. "Cross-scale modeling-driven multi-state estimation framework for lithium-ion batteries with integrated distributed thermal sensing," Energy, Elsevier, vol. 335(C).
- Wang, Qilin & Wang, Yuexiang & Guo, Wenqi & Xie, Song, 2025. "A data-driven framework for lithium-ion batteries safety assessment integrating health degradation and key thermal safety parameters," Energy, Elsevier, vol. 334(C).
- Cai, Hongchang & Tang, Xiaopeng & Lai, Xin & Wang, Yanan & Han, Xuebing & Ouyang, Minggao & Zheng, Yuejiu, 2024. "How battery capacities are correctly estimated considering latent short-circuit faults," Applied Energy, Elsevier, vol. 375(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924010158. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/appene/v370y2024ics0306261924010158.html