IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp678-688.html
   My bibliography  Save this article

Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique

Author

Listed:
  • Zhang, Cheng
  • Allafi, Walid
  • Dinh, Quang
  • Ascencio, Pedro
  • Marco, James

Abstract

Battery equivalent circuit models (ECMs) are widely employed in online battery management applications. The model parameters are known to vary according to the operating conditions, such as the battery state of charge (SOC). Therefore, online recursive ECM parameter estimation is one means that may help to improve the modelling accuracy. Because a battery system consists of both fast and slow dynamics, the classical least squares (LS) method, that estimates together all the model parameters, is known to suffer from numerical problems and poor accuracy. The aim of this paper is to overcome this problem by proposing a new decoupled weighted recursive least squares (DWRLS) method, which estimates separately the parameters of the battery fast and slow dynamics. Battery SOC estimation is also achieved based on the parameter estimation results. This circumvents an additional full-order observer for SOC estimation, leading to a reduced complexity. An extensive simulation study is conducted to compare the proposed method against the LS technique. Experimental data are collected using a Li ion cell. Finally, both the simulation and experimental results have demonstrated that the proposed DWRLS approach can improve not only the modelling accuracy but also the SOC estimation performance compared with the LS algorithm.

Suggested Citation

  • Zhang, Cheng & Allafi, Walid & Dinh, Quang & Ascencio, Pedro & Marco, James, 2018. "Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique," Energy, Elsevier, vol. 142(C), pages 678-688.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:678-688
    DOI: 10.1016/j.energy.2017.10.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Bing & Zhao, Xin & de Callafon, Raymond & Garnier, Hugues & Nguyen, Truong & Mi, Chris, 2016. "Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods," Applied Energy, Elsevier, vol. 179(C), pages 426-436.
    2. Xiong, Rui & Sun, Fengchun & Gong, Xianzhi & Gao, Chenchen, 2014. "A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 1421-1433.
    3. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    4. Xiangwei Guo & Longyun Kang & Yuan Yao & Zhizhen Huang & Wenbiao Li, 2016. "Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm," Energies, MDPI, vol. 9(2), pages 1-16, February.
    5. Xia, Bizhong & Chen, Chaoren & Tian, Yong & Wang, Mingwang & Sun, Wei & Xu, Zhihui, 2015. "State of charge estimation of lithium-ion batteries based on an improved parameter identification method," Energy, Elsevier, vol. 90(P2), pages 1426-1434.
    6. Dai, Haifeng & Xu, Tianjiao & Zhu, Letao & Wei, Xuezhe & Sun, Zechang, 2016. "Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales," Applied Energy, Elsevier, vol. 184(C), pages 119-131.
    7. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.
    8. Zhang, Xu & Wang, Yujie & Yang, Duo & Chen, Zonghai, 2016. "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model," Energy, Elsevier, vol. 115(P1), pages 219-229.
    9. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    10. Zheng, Fangdan & Jiang, Jiuchun & Sun, Bingxiang & Zhang, Weige & Pecht, Michael, 2016. "Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles," Energy, Elsevier, vol. 113(C), pages 64-75.
    11. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    2. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    3. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    4. Muhammad Umair Ali & Muhammad Ahmad Kamran & Pandiyan Sathish Kumar & Himanshu & Sarvar Hussain Nengroo & Muhammad Adil Khan & Altaf Hussain & Hee-Je Kim, 2018. "An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method," Energies, MDPI, vol. 11(11), pages 1-19, October.
    5. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    6. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    7. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    8. Hatherall, Ollie & Barai, Anup & Niri, Mona Faraji & Wang, Zeyuan & Marco, James, 2024. "Novel battery power capability assessment for improved eVTOL aircraft landing," Applied Energy, Elsevier, vol. 361(C).
    9. Zizhou Lao & Bizhong Xia & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "A Novel Method for Lithium-Ion Battery Online Parameter Identification Based on Variable Forgetting Factor Recursive Least Squares," Energies, MDPI, vol. 11(6), pages 1-15, May.
    10. Allafi, Walid & Uddin, Kotub & Zhang, Cheng & Mazuir Raja Ahsan Sha, Raja & Marco, James, 2017. "On-line scheme for parameter estimation of nonlinear lithium ion battery equivalent circuit models using the simplified refined instrumental variable method for a modified Wiener continuous-time model," Applied Energy, Elsevier, vol. 204(C), pages 497-508.
    11. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    12. Zhang, Shuzhi & Zhang, Chen & Jiang, Shiyong & Zhang, Xiongwen, 2022. "A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation," Energy, Elsevier, vol. 246(C).
    13. Pan, Haihong & Lü, Zhiqiang & Lin, Weilong & Li, Junzi & Chen, Lin, 2017. "State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model," Energy, Elsevier, vol. 138(C), pages 764-775.
    14. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    15. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    16. Fan Zhang & Lele Yin & Jianqiang Kang, 2021. "Enhancing Stability and Robustness of State-of-Charge Estimation for Lithium-Ion Batteries by Using Improved Adaptive Kalman Filter Algorithms," Energies, MDPI, vol. 14(19), pages 1-18, October.
    17. Zhu, Jiangong & Knapp, Michael & Darma, Mariyam Susana Dewi & Fang, Qiaohua & Wang, Xueyuan & Dai, Haifeng & Wei, Xuezhe & Ehrenberg, Helmut, 2019. "An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application," Applied Energy, Elsevier, vol. 248(C), pages 149-161.
    18. Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
    19. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Wei, Zhongbao & Meng, Shujuan & Xiong, Binyu & Ji, Dongxu & Tseng, King Jet, 2016. "Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer," Applied Energy, Elsevier, vol. 181(C), pages 332-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:678-688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.