IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1236-d1604509.html
   My bibliography  Save this article

Lithium-Ion Battery State of Health Estimation Based on Feature Reconstruction and Transformer-GRU Parallel Architecture

Author

Listed:
  • Bing Chen

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China
    China Energy Engineering Group Guangdong Teway Energy Storage Technology Co., Ltd., Guangzhou 510660, China)

  • Yongjun Zhang

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China)

  • Jinsong Wu

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China
    China Energy Engineering Group Guangdong Teway Energy Storage Technology Co., Ltd., Guangzhou 510660, China)

  • Hongyuan Yuan

    (China Energy Engineering Group Guangdong Teway Energy Storage Technology Co., Ltd., Guangzhou 510660, China)

  • Fang Guo

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528200, China)

Abstract

Estimating the state of health of lithium-ion batteries in energy storage systems is a key step in their subsequent safety monitoring and energy optimization management. This study proposes a method for estimating the state of health of lithium-ion batteries based on feature reconstruction and Transformer-GRU parallel architecture to solve the problems of noisy feature data and the poor applicability of a single model to different types and operating conditions of batteries. First, the incremental capacity curve was constructed based on the charging data, smoothed using Gaussian filtering, and the diverse health features were extracted in combination with the charging voltage curve. Then, this study used the CEEMDAN algorithm to reconstruct the IC curve features, which reduces noisy data due to the process of data collection and processing. Lastly, this study used the cross-attention mechanism to fuse the Transformer and GRU neural networks, which constructed a Transformer-GRU parallel model to improve its ability to mine time-dependent features and global features for state of health estimation. This study conducted experiments using three datasets from Oxford, CALCE, and NASA. The results show that the RMSE of the state of health estimation by the proposed method is 0.0071, which is an improvement of 61.41% in the accuracy of its baseline model.

Suggested Citation

  • Bing Chen & Yongjun Zhang & Jinsong Wu & Hongyuan Yuan & Fang Guo, 2025. "Lithium-Ion Battery State of Health Estimation Based on Feature Reconstruction and Transformer-GRU Parallel Architecture," Energies, MDPI, vol. 18(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1236-:d:1604509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Wencan & He, Hancheng & Li, Taotao & Yuan, Jiangfeng & Xie, Yi & Long, Zhuoru, 2024. "Lithium-ion battery state of health prognostication employing multi-model fusion approach based on image coding of charging voltage and temperature data," Energy, Elsevier, vol. 296(C).
    2. Li, Ziyang & Zhang, Xiangwen & Gao, Wei, 2024. "State of health estimation of lithium-ion battery during fast charging process based on BiLSTM-Transformer," Energy, Elsevier, vol. 311(C).
    3. Tao Zhang & Yang Wang & Rui Ma & Yi Zhao & Mengjiao Shi & Wen Qu, 2023. "Prediction of Lithium Battery Health State Based on Temperature Rate of Change and Incremental Capacity Change," Energies, MDPI, vol. 16(22), pages 1-17, November.
    4. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    5. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).
    6. Zhang, Xugang & Gao, Xiyuan & Duan, Linchao & Gong, Qingshan & Wang, Yan & Ao, Xiuyi, 2025. "A novel method for state of health estimation of lithium-ion batteries based on fractional-order differential voltage-capacity curve," Applied Energy, Elsevier, vol. 377(PA).
    7. Jiwei Wang & Hao Li & Chunling Wu & Yujun Shi & Linxuan Zhang & Yi An, 2024. "State of Health Estimations for Lithium-Ion Batteries Based on MSCNN," Energies, MDPI, vol. 17(17), pages 1-21, August.
    8. Emil Petkovski & Iacopo Marri & Loredana Cristaldi & Marco Faifer, 2023. "State of Health Estimation Procedure for Lithium-Ion Batteries Using Partial Discharge Data and Support Vector Regression," Energies, MDPI, vol. 17(1), pages 1-14, December.
    9. Yang, Yongsong & Xu, Yuchen & Nie, Yuwei & Li, Jianming & Liu, Shizhuo & Zhao, Lijun & Yu, Quanqing & Zhang, Chengming, 2024. "Deep transfer learning enables battery state of charge and state of health estimation," Energy, Elsevier, vol. 294(C).
    10. Tang, Aihua & Xu, Yuchen & Hu, Yuanzhi & Tian, Jinpeng & Nie, Yuwei & Yan, Fuwu & Tan, Yong & Yu, Quanqing, 2024. "Battery state of health estimation under dynamic operations with physics-driven deep learning," Applied Energy, Elsevier, vol. 370(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiarui & Mao, Lei & Liu, Zhongyong & Yu, Kun & Hu, Zhiyong, 2025. "A Bayesian transfer learning framework for assessing health status of Lithium-ion batteries considering individual battery operating states," Applied Energy, Elsevier, vol. 382(C).
    2. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    3. Yu, Quanqing & Nie, Yuwei & Guo, Shanshan & Li, Junfu & Zhang, Chengming, 2024. "Machine learning enables rapid state of health estimation of each cell within battery pack," Applied Energy, Elsevier, vol. 375(C).
    4. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    5. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    6. Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
    7. Zhang, Xugang & Gao, Xiyuan & Duan, Linchao & Gong, Qingshan & Wang, Yan & Ao, Xiuyi, 2025. "A novel method for state of health estimation of lithium-ion batteries based on fractional-order differential voltage-capacity curve," Applied Energy, Elsevier, vol. 377(PA).
    8. Huang, Zhelin & Xu, Fan & Yang, Fangfang, 2023. "State of health prediction of lithium-ion batteries based on autoregression with exogenous variables model," Energy, Elsevier, vol. 262(PB).
    9. Cai, Hongchang & Tang, Xiaopeng & Lai, Xin & Wang, Yanan & Han, Xuebing & Ouyang, Minggao & Zheng, Yuejiu, 2024. "How battery capacities are correctly estimated considering latent short-circuit faults," Applied Energy, Elsevier, vol. 375(C).
    10. Yang, Jufeng & Li, Xin & Sun, Xiaodong & Cai, Yingfeng & Mi, Chris, 2023. "An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time," Energy, Elsevier, vol. 263(PB).
    11. Ma, Yan & Li, Jiaqi & Gao, Jinwu & Chen, Hong, 2025. "Prognostication of lithium-ion battery capacity fade based on data space compression visualization and SMA-ISVR," Applied Energy, Elsevier, vol. 380(C).
    12. Lin, Chuanping & Xu, Jun & Shi, Mingjie & Mei, Xuesong, 2022. "Constant current charging time based fast state-of-health estimation for lithium-ion batteries," Energy, Elsevier, vol. 247(C).
    13. Li, Kailing & Xie, Naiming, 2024. "Battery health prognostics based on improved incremental capacity using a hybrid grey modelling and Gaussian process regression," Energy, Elsevier, vol. 303(C).
    14. Tao, Junjie & Wang, Shunli & Cao, Wen & Fernandez, Carlos & Blaabjerg, Frede & Cheng, Liangwei, 2025. "An innovative multitask learning - Long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current condi," Energy, Elsevier, vol. 314(C).
    15. Yu, Miao & Zhu, Yuhao & Gu, Xin & Li, Jinglun & Shang, Yunlong, 2024. "Co-estimation and definition for states of health and charge of lithium-ion batteries using expansion," Energy, Elsevier, vol. 308(C).
    16. Fan, Yuqian & Zhao, Jifei & Li, Yi & Wang, Jianping & Yang, Fangfang & Tan, Xiaojun, 2025. "Integrated framework for battery cell state-of-health estimation in complex modules: Combining current distribution analysis and novel terminal voltage estimation L-EKF modeling," Energy, Elsevier, vol. 314(C).
    17. Zhang, Shuxin & Liu, Zhitao & Su, Hongye, 2023. "State of health estimation for lithium-ion batteries on few-shot learning," Energy, Elsevier, vol. 268(C).
    18. Tao, Junjie & Wang, Shunli & Cao, Wen & Cui, Yixiu & Fernandez, Carlos & Guerrero, Josep M., 2024. "Innovative multiscale fusion – Antinoise extended long short-term memory neural network modeling for high precision state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 312(C).
    19. Giovane Ronei Sylvestrin & Joylan Nunes Maciel & Marcio Luís Munhoz Amorim & João Paulo Carmo & José A. Afonso & Sérgio F. Lopes & Oswaldo Hideo Ando Junior, 2025. "State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review," Energies, MDPI, vol. 18(3), pages 1-77, February.
    20. Song, Ziyou & Hou, Jun & Li, Xuefeng & Wu, Xiaogang & Hu, Xiaosong & Hofmann, Heath & Sun, Jing, 2020. "The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1236-:d:1604509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.