IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1504-d1648251.html
   My bibliography  Save this article

Optimizing Fuel Economy in Hybrid Electric Vehicles Using the Equivalent Consumption Minimization Strategy Based on the Arithmetic Optimization Algorithm

Author

Listed:
  • Houssam Eddine Ghadbane

    (Département d’Electrotechnique et Automatique, Laboratoire de Génie Électrique de Guelma (LGEG), Université 8 Mai 1945, Guelma 24000, Algeria)

  • Ahmed F. Mohamed

    (Industrial Engineering Department, College of Engineering and Architecture, Umm Al-Qura University, P.O. Box 5555, Makkah 21955, Saudi Arabia)

Abstract

Due to their improved performance and advantages for the environment, fuel cell hybrid electric cars, or FCEVs, have garnered a lot of attention. Establishing an energy management strategy (EMS) for fuel cell electric vehicles (FCEVs) is essential for optimizing power distribution among various energy sources. This method addresses concerns regarding hydrogen utilization and efficiency. The Arithmetic Optimization Algorithm is employed in the proposed energy management system to enhance the strategy of maximizing external energy, leading to decreased hydrogen consumption and increased system efficiency. The performance of the proposed EMS is evaluated using the Federal Test Procedure (FTP-75) to replicate city driving situations and is compared with existing algorithms through a comparison co-simulation. The co-simulation findings indicate that the suggested EMS surpasses current approaches in reducing fuel consumption, potentially decreasing it by 59.28%. The proposed energy management strategy demonstrates an 8.43% improvement in system efficiency. This enhancement may reduce dependence on fossil fuels and mitigate the adverse environmental effects associated with automobile emissions. To assess the feasibility and effectiveness of the proposed EMS, the system is tested within a Processor-in-the-Loop (PIL) co-simulation environment using the C2000 launchxl-f28379d Digital Signal Processing (DSP) board.

Suggested Citation

  • Houssam Eddine Ghadbane & Ahmed F. Mohamed, 2025. "Optimizing Fuel Economy in Hybrid Electric Vehicles Using the Equivalent Consumption Minimization Strategy Based on the Arithmetic Optimization Algorithm," Mathematics, MDPI, vol. 13(9), pages 1-18, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1504-:d:1648251
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhifu Wang & Wei Luo & Song Xu & Yuan Yan & Limin Huang & Jingkai Wang & Wenmei Hao & Zhongyi Yang, 2023. "Electric Vehicle Lithium-Ion Battery Fault Diagnosis Based on Multi-Method Fusion of Big Data," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    2. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    3. Wang, Jianfeng & Zuo, Zhiwen & Wei, Yili & Jia, Yongkai & Chen, Bowei & Li, Yuhan & Yang, Na, 2024. "State of charge estimation of lithium-ion battery based on GA-LSTM and improved IAKF," Applied Energy, Elsevier, vol. 368(C).
    4. Yaoyidi Wang & Niansheng Chen & Guangyu Fan & Dingyu Yang & Lei Rao & Songlin Cheng & Xiaoyong Song, 2023. "DLPformer: A Hybrid Mathematical Model for State of Charge Prediction in Electric Vehicles Using Machine Learning Approaches," Mathematics, MDPI, vol. 11(22), pages 1-21, November.
    5. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    6. Phiraphat Antarasee & Suttichai Premrudeepreechacharn & Apirat Siritaratiwat & Sirote Khunkitti, 2022. "Optimal Design of Electric Vehicle Fast-Charging Station’s Structure Using Metaheuristic Algorithms," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    7. Hou, Jiayang & Xu, Jun & Lin, Chuanping & Jiang, Delong & Mei, Xuesong, 2024. "State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method," Energy, Elsevier, vol. 290(C).
    8. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas, 2023. "Real-Time Management for an EV Hybrid Storage System Based on Fuzzy Control," Mathematics, MDPI, vol. 11(21), pages 1-18, October.
    9. Peng, Hujun & Li, Jianxiang & Löwenstein, Lars & Hameyer, Kay, 2020. "A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle," Applied Energy, Elsevier, vol. 267(C).
    10. Peerawat Payakkamas & Joop de Kraker & Marc Dijk, 2023. "Transformation of the Urban Energy–Mobility Nexus: Implications for Sustainability and Equity," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    11. Zhai, Xiangyu & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Wang, Peng & Sun, Hongbin, 2025. "Risk-averse energy management for integrated electricity and heat systems considering building heating vertical imbalance: An asynchronous decentralized approach," Applied Energy, Elsevier, vol. 383(C).
    12. Morteza Nazari-Heris & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    13. Aminu Babangida & Chiedozie Maduakolam Light Odazie & Péter Tamás Szemes, 2023. "Optimal Control Design and Online Controller-Area-Network Bus Data Analysis for a Light Commercial Hybrid Electric Vehicle," Mathematics, MDPI, vol. 11(15), pages 1-19, August.
    14. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control," Applied Energy, Elsevier, vol. 355(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seydali Ferahtia & Hegazy Rezk & Rania M. Ghoniem & Ahmed Fathy & Reem Alkanhel & Mohamed M. Ghonem, 2023. "Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    2. Hegazy Rezk & Mohammad Ali Abdelkareem & Samah Ibrahim Alshathri & Enas Taha Sayed & Mohamad Ramadan & Abdul Ghani Olabi, 2023. "Fuel Economy Energy Management of Electric Vehicles Using Harris Hawks Optimization," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    3. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    4. Ahmed Darwish & George A. Aggidis, 2025. "A Modular Step-Up DC–DC Converter Based on Dual-Isolated SEPIC/Cuk for Electric Vehicle Applications," Energies, MDPI, vol. 18(1), pages 1-24, January.
    5. Yan Tong & Issam Salhi & Qin Wang & Gang Lu & Shengyu Wu, 2025. "Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(9), pages 1-29, May.
    6. Khosravi, Nima & Oubelaid, Adel, 2025. "Deep learning-driven estimation and multi-objective optimization of lithium-ion battery parameters for enhanced EV/HEV performance," Energy, Elsevier, vol. 320(C).
    7. Zhao, Zhihui & Kou, Farong & Pan, Zhengniu & Chen, Leiming & Yang, Tianxiang, 2024. "Ultra-high-accuracy state-of-charge fusion estimation of lithium-ion batteries using variational mode decomposition," Energy, Elsevier, vol. 309(C).
    8. Kumar, Vijay & Choudhary, Akhilesh Kumar, 2024. "Prediction of the Performance and emission characteristics of diesel engine using diphenylamine Antioxidant and ceria nanoparticle additives with biodiesel based on machine learning," Energy, Elsevier, vol. 301(C).
    9. Xin Ma & Xingke Ding & Chongyi Tian & Changbin Tian & Rui Zhu, 2025. "Estimation of Lithium-Ion Battery State of Health-Based Multi-Feature Analysis and Convolutional Neural Network–Long Short-Term Memory," Sustainability, MDPI, vol. 17(9), pages 1-20, April.
    10. Wu, Jiang & Lei, Dong & Liu, Zelong & Zhang, Yan, 2024. "A fusion algorithm of multidimensional element space mapping architecture for SOC estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 311(C).
    11. Zhiming Zhang & Chenfu Quan & Sai Wu & Tong Zhang & Jinming Zhang, 2024. "An Electrochemical Performance Model Considering of Non-Uniform Gas Distribution Based on Porous Media Method in PEMFC Stack," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    12. Sheng, Wenjuan & Wang, Junkai & Peng, G.D., 2025. "Enhanced strain assistance for SOC estimation of lithium-ion batteries using FBG sensors," Applied Energy, Elsevier, vol. 383(C).
    13. Zhang, Zhongbo & Yu, Wei & Yan, Zhiying & Zhu, Wenbo & Li, Haibing & Liu, Qin & Guan, Quanlong & Tan, Ning, 2025. "State of charge estimation of lithium-ion batteries using a fractional-order multi-dimensional Taylor network with adaptive Kalman filter," Energy, Elsevier, vol. 316(C).
    14. Shuai Zhang & Dong Guo & Bin Zhou & Chunyan Zheng & Zhiqin Li & Pengcheng Ma, 2025. "An Adaptive Electric Vehicle Charging Management Strategy for Multi-Level Travel Demands," Sustainability, MDPI, vol. 17(6), pages 1-48, March.
    15. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    16. Zhang, Yuan & Li, Yifan & Tian, Zhen & Yang, Chao & Peng, Hao & Kan, Ankang & Gao, Wenzhong, 2025. "Thermodynamic performance prediction and optimization of a 1 kW ocean thermal energy cogeneration system based on artificial neural network," Energy, Elsevier, vol. 314(C).
    17. Togun, Hussein & Basem, Ali & Abdulrazzaq, Tuqa & Biswas, Nirmalendu & Abed, Azher M. & dhabab, Jameel M. & Chattopadhyay, Anirban & Slimi, Khalifa & Paul, Dipankar & Barmavatu, Praveen & Chrouda, Ama, 2025. "Development and comparative analysis between battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV)," Applied Energy, Elsevier, vol. 388(C).
    18. Thet Paing Tun & Oguzhan Ceylan & Ioana Pisica, 2025. "A Real-World Case Study Towards Net Zero: EV Charger and Heat Pump Integration in End-User Residential Distribution Networks," Energies, MDPI, vol. 18(10), pages 1-27, May.
    19. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    20. Zhang, Yahui & You, Xiongxiong & Song, Yunfeng & Zhao, Yahui & Wei, Zeyi & Jiao, Xiaohong, 2025. "Hierarchical eco-driving of connected hybrid electric vehicles: Integrating predictive cruise control and cost-to-go approximation-guided energy management," Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1504-:d:1648251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.