Deep learning-driven estimation and multi-objective optimization of lithium-ion battery parameters for enhanced EV/HEV performance
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135147
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
- Khosravi, Nima & Baghbanzadeh, Rasoul & Oubelaid, Adel & Tostado-Véliz, Marcos & Bajaj, Mohit & Hekss, Zineb & Echalih, Salwa & Belkhier, Youcef & Houran, Mohamad Abou & Aboras, Kareem M., 2023. "A novel control approach to improve the stability of hybrid AC/DC microgrids," Applied Energy, Elsevier, vol. 344(C).
- Zhao, Xinze & Sun, Bingxiang & Zhang, Weige & He, Xitian & Ma, Shichang & Zhang, Junwei & Liu, Xiaopeng, 2024. "Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries," Applied Energy, Elsevier, vol. 353(PA).
- Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2025. "Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization," Applied Energy, Elsevier, vol. 379(C).
- Xia, Bing & Zhao, Xin & de Callafon, Raymond & Garnier, Hugues & Nguyen, Truong & Mi, Chris, 2016. "Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods," Applied Energy, Elsevier, vol. 179(C), pages 426-436.
- Hou, Jiayang & Xu, Jun & Lin, Chuanping & Jiang, Delong & Mei, Xuesong, 2024. "State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method," Energy, Elsevier, vol. 290(C).
- Ning, Bo & Cao, Binggang & Wang, Bin & Zou, Zhongyue, 2018. "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online," Energy, Elsevier, vol. 153(C), pages 732-742.
- Xiong, Rui & Li, Linlin & Li, Zhirun & Yu, Quanqing & Mu, Hao, 2018. "An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 264-275.
- Li, Feng & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & Zhang, Guangde, 2024. "State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model," Energy, Elsevier, vol. 289(C).
- Cui, Yingzhi & Zuo, Pengjian & Du, Chunyu & Gao, Yunzhi & Yang, Jie & Cheng, Xinqun & Ma, Yulin & Yin, Geping, 2018. "State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method," Energy, Elsevier, vol. 144(C), pages 647-656.
- Kim, Minho & Chun, Huiyong & Kim, Jungsoo & Kim, Kwangrae & Yu, Jungwook & Kim, Taegyun & Han, Soohee, 2019. "Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search," Applied Energy, Elsevier, vol. 254(C).
- Chen, Xiaokai & Lei, Hao & Xiong, Rui & Shen, Weixiang & Yang, Ruixin, 2019. "A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 255(C).
- Wang, Jianfeng & Zuo, Zhiwen & Wei, Yili & Jia, Yongkai & Chen, Bowei & Li, Yuhan & Yang, Na, 2024. "State of charge estimation of lithium-ion battery based on GA-LSTM and improved IAKF," Applied Energy, Elsevier, vol. 368(C).
- Zheng, Kun & Li, Yijing & Yang, Zhipeng & Zhou, Feifan & Yang, Kun & Song, Zhengxiang & Meng, Jinhao, 2025. "Adversarial training defense strategy for lithium-ion batteries state of health estimation with deep learning," Energy, Elsevier, vol. 317(C).
- Xu, Huanwei & Wu, Lingfeng & Xiong, Shizhe & Li, Wei & Garg, Akhil & Gao, Liang, 2023. "An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries," Energy, Elsevier, vol. 276(C).
- Deng, Zhongwei & Deng, Hao & Yang, Lin & Cai, Yishan & Zhao, Xiaowei, 2017. "Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery," Energy, Elsevier, vol. 138(C), pages 509-519.
- Li, Yuanmao & Liu, Guixiong & Deng, Wei & Li, Zuyu, 2024. "Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods," Applied Energy, Elsevier, vol. 367(C).
- Khosravi, Nima & Dowlatabadi, Masrour & Sabzevari, Kiomars, 2025. "A hierarchical deep learning approach to optimizing voltage and frequency control in networked microgrid systems," Applied Energy, Elsevier, vol. 377(PA).
- Hu, Minghui & Li, Yunxiao & Li, Shuxian & Fu, Chunyun & Qin, Datong & Li, Zonghua, 2018. "Lithium-ion battery modeling and parameter identification based on fractional theory," Energy, Elsevier, vol. 165(PB), pages 153-163.
- Xia, Bizhong & Chen, Chaoren & Tian, Yong & Wang, Mingwang & Sun, Wei & Xu, Zhihui, 2015. "State of charge estimation of lithium-ion batteries based on an improved parameter identification method," Energy, Elsevier, vol. 90(P2), pages 1426-1434.
- Chen, Liping & Xie, Siqiang & Lopes, António M. & Li, Huafeng & Bao, Xinyuan & Zhang, Chaolong & Li, Penghua, 2024. "A new SOH estimation method for Lithium-ion batteries based on model-data-fusion," Energy, Elsevier, vol. 286(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Zhihui & Kou, Farong & Pan, Zhengniu & Chen, Leiming & Yang, Tianxiang, 2024. "Ultra-high-accuracy state-of-charge fusion estimation of lithium-ion batteries using variational mode decomposition," Energy, Elsevier, vol. 309(C).
- Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
- Wu, Jiang & Lei, Dong & Liu, Zelong & Zhang, Yan, 2024. "A fusion algorithm of multidimensional element space mapping architecture for SOC estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 311(C).
- Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
- Sun, Jing & Wang, Haitao, 2025. "State of health estimation for lithium-ion batteries based on optimal feature subset algorithm," Energy, Elsevier, vol. 322(C).
- Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Gao, Yizhao & Zhu, Chong & Zhang, Xi & Guo, Bangjun, 2021. "Implementation and evaluation of a practical electrochemical- thermal model of lithium-ion batteries for EV battery management system," Energy, Elsevier, vol. 221(C).
- Shuai Zhang & Dong Guo & Bin Zhou & Chunyan Zheng & Zhiqin Li & Pengcheng Ma, 2025. "An Adaptive Electric Vehicle Charging Management Strategy for Multi-Level Travel Demands," Sustainability, MDPI, vol. 17(6), pages 1-48, March.
- Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
- Shu, Xiong & Li, Yongjing & Wei, Kexiang & Yang, Wenxian & Yang, Bowen & Zhang, Ming, 2025. "Research on the output characteristics and SOC estimation method of lithium-ion batteries over a wide range of operating temperature conditions," Energy, Elsevier, vol. 317(C).
- Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
- Kim, Minho & Chun, Huiyong & Kim, Jungsoo & Kim, Kwangrae & Yu, Jungwook & Kim, Taegyun & Han, Soohee, 2019. "Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search," Applied Energy, Elsevier, vol. 254(C).
- Tao, Junjie & Wang, Shunli & Cao, Wen & Fernandez, Carlos & Blaabjerg, Frede & Cheng, Liangwei, 2025. "An innovative multitask learning - Long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current condi," Energy, Elsevier, vol. 314(C).
- Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
- Li, Yuanmao & Liu, Guixiong & Deng, Wei & Li, Zuyu, 2024. "Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods," Applied Energy, Elsevier, vol. 367(C).
- Wang, Chao & Wang, Xin & Yang, Mingjian & Li, Jiale & Qian, Feng & Zhang, Zunhua & Zhou, Mengni & Guo, Xiaofeng & Wang, Kai, 2025. "Concurrent estimation of lithium-ion battery charge and energy states by fractional-order model and multi-innovation adaptive cubature Kalman filter," Energy, Elsevier, vol. 322(C).
- Houssam Eddine Ghadbane & Ahmed F. Mohamed, 2025. "Optimizing Fuel Economy in Hybrid Electric Vehicles Using the Equivalent Consumption Minimization Strategy Based on the Arithmetic Optimization Algorithm," Mathematics, MDPI, vol. 13(9), pages 1-18, May.
- Zhang, Chengzhong & Zhao, Hongyu & Xu, Yangyang & Li, Shengjia & Liao, Chenglin & Wang, Liye & Wang, Lifang, 2025. "State of charge accurate estimation of lithium-ion batteries based on augmenting observation dimension estimator over wide temperature range," Energy, Elsevier, vol. 316(C).
- Giovane Ronei Sylvestrin & Joylan Nunes Maciel & Marcio Luís Munhoz Amorim & João Paulo Carmo & José A. Afonso & Sérgio F. Lopes & Oswaldo Hideo Ando Junior, 2025. "State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review," Energies, MDPI, vol. 18(3), pages 1-77, February.
- Ahmed Fathy & Dalia Yousri & Abdullah G. Alharbi & Mohammad Ali Abdelkareem, 2023. "A New Hybrid White Shark and Whale Optimization Approach for Estimating the Li-Ion Battery Model Parameters," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007893. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.