IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923013569.html
   My bibliography  Save this article

Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries

Author

Listed:
  • Zhao, Xinze
  • Sun, Bingxiang
  • Zhang, Weige
  • He, Xitian
  • Ma, Shichang
  • Zhang, Junwei
  • Liu, Xiaopeng

Abstract

Accurate state-of-charge (SOC) estimation is crucial for ensuring the safe and reliable operation of battery management systems (BMS). Among the various algorithms used for SOC estimation in real-vehicle BMS, the extended Kalman filter (EKF) algorithm holds significance due to its adherence to optimal estimation principles and its property of insensitivity to initial values. By studying the relationship between error sources and SOC estimation errors, it becomes possible to develop targeted measures for enhancing the accuracy of SOC estimation based on the EKF. From a probabilistic perspective, this paper derives theoretical equations that establish the connection between SOC estimation errors and various error sources, including measured voltage, measured current, open circuit voltage curve, capacity, ohmic internal resistance, and polarization resistance. Furthermore, the paper analyzes the relationship among multiple error sources in generating SOC estimation errors. Building upon the outcomes of this theoretical analysis, a joint SOC estimation method that combines the EKF with Ampere-hour counting (AHC) is employed to identify errors. In scenarios where simultaneous faults occur in the current and voltage sensors, they are identified based on the slope and Euclidean distance of the two SOC trajectories, respectively. Subsequently, sensor faults correction and SOC compensation are implemented by leveraging simplified equations involving capacity and SOC increments and measured voltage and SOC estimation errors. In addition to addressing sensor faults, the paper also considers battery model parameter errors. By incorporating customized current pulse profile and theoretical equations relating to error sources and SOC estimation errors, a comprehensive error estimation of model parameters is achieved, capable of handling single and multiple errors. The derived simplification bridges the gap between error sources and SOC estimation errors, offering a novel approach for parameter sensitivity analysis and a theoretical foundation for quantifying these errors. The experimental results demonstrate the effectiveness and rapidity of the proposed method for identifying and correcting sensor faults and model parameter errors.

Suggested Citation

  • Zhao, Xinze & Sun, Bingxiang & Zhang, Weige & He, Xitian & Ma, Shichang & Zhang, Junwei & Liu, Xiaopeng, 2024. "Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013569
    DOI: 10.1016/j.apenergy.2023.121992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    2. Quanqing Yu & Changjiang Wan & Junfu Li & Rui Xiong & Zeyu Chen, 2021. "A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles," Energies, MDPI, vol. 14(4), pages 1-15, February.
    3. Ting Zhao & Jiuchun Jiang & Caiping Zhang & Kai Bai & Na Li, 2015. "Robust Online State of Charge Estimation of Lithium-Ion Battery Pack Based on Error Sensitivity Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, October.
    4. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Noelle, Daniel J. & Wang, Meng & Le, Anh V. & Shi, Yang & Qiao, Yu, 2018. "Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting," Applied Energy, Elsevier, vol. 212(C), pages 796-808.
    6. Zhentong Liu & Hongwen He, 2015. "Model-based Sensor Fault Diagnosis of a Lithium-ion Battery in Electric Vehicles," Energies, MDPI, vol. 8(7), pages 1-19, June.
    7. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    8. Peng, Jiankun & Luo, Jiayi & He, Hongwen & Lu, Bing, 2019. "An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Xiong, Rui & Huang, Jintao & Duan, Yanzhou & Shen, Weixiang, 2022. "Enhanced Lithium-ion battery model considering critical surface charge behavior," Applied Energy, Elsevier, vol. 314(C).
    10. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    11. Kang, Yongzhe & Duan, Bin & Zhou, Zhongkai & Shang, Yunlong & Zhang, Chenghui, 2020. "Online multi-fault detection and diagnosis for battery packs in electric vehicles," Applied Energy, Elsevier, vol. 259(C).
    12. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.
    13. Zhu, Qiao & Xu, Mengen & Liu, Weiqun & Zheng, Mengqian, 2019. "A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter," Energy, Elsevier, vol. 187(C).
    14. Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    4. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    5. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    6. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    7. Xu, Yiming & Ge, Xiaohua & Shen, Weixiang, 2024. "Multi-objective nonlinear observer design for multi-fault detection of lithium-ion battery in electric vehicles," Applied Energy, Elsevier, vol. 362(C).
    8. Deng Ma & Kai Gao & Yutao Mu & Ziqi Wei & Ronghua Du, 2022. "An Adaptive Tracking-Extended Kalman Filter for SOC Estimation of Batteries with Model Uncertainty and Sensor Error," Energies, MDPI, vol. 15(10), pages 1-18, May.
    9. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    10. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Chen, Liping & Wu, Xiaobo & Lopes, António M. & Yin, Lisheng & Li, Penghua, 2022. "Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter," Energy, Elsevier, vol. 252(C).
    12. Shen, Jiangwei & Ma, Wensai & Xiong, Jian & Shu, Xing & Zhang, Yuanjian & Chen, Zheng & Liu, Yonggang, 2022. "Alternative combined co-estimation of state of charge and capacity for lithium-ion batteries in wide temperature scope," Energy, Elsevier, vol. 244(PB).
    13. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    14. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    15. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    16. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    17. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    18. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    20. Yue Zhou & Hussein Obeid & Salah Laghrouche & Mickael Hilairet & Abdesslem Djerdir, 2020. "A Disturbance Rejection Control Strategy of a Single Converter Hybrid Electrical System Integrating Battery Degradation," Energies, MDPI, vol. 13(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.