IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924016969.html
   My bibliography  Save this article

A hierarchical deep learning approach to optimizing voltage and frequency control in networked microgrid systems

Author

Listed:
  • Khosravi, Nima
  • Dowlatabadi, Masrour
  • Sabzevari, Kiomars

Abstract

Distributed energy sources (DERs) and microgrids (MGs) will play an important role in improving the resilience, reliability and sustainability of the grid through dedicated generation, load management and additional capacity struggling to cope with challenges. This study addresses the challenges faced by MG systems, especially in monitoring voltage-frequency operation (V/F) using the proposed two-layer operation scheme that aims to improve MG performance. A pioneering approach is to determine controller coefficients with information from the system components using hierarchical deep-learning-based recurrent convolutional neural network (HDL-RCNN)-excluded attributes have enabled these distributions themselves to determine the optimal conditions for optimal V/F control. Further, the fractional order proportional integral derivative (FOPID) approach, along with the root of the proposed technique, will serve as comparative methods to assess the performance of the HDL-CNN approach. The effectiveness of the proposed method is demonstrated through implementation and validation using the MATLAB/SIMULINK platform.

Suggested Citation

  • Khosravi, Nima & Dowlatabadi, Masrour & Sabzevari, Kiomars, 2025. "A hierarchical deep learning approach to optimizing voltage and frequency control in networked microgrid systems," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924016969
    DOI: 10.1016/j.apenergy.2024.124313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Khosravi, Nima & Dowlatabadi, Masrour & Abdelghany, Muhammad Bakr & Tostado-Véliz, Marcos & Jurado, Francisco, 2024. "Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models," Applied Energy, Elsevier, vol. 356(C).
    2. Xia, Qinqin & Wang, Yu & Zou, Yao & Yan, Ziming & Zhou, Niancheng & Chi, Yuan & Wang, Qianggang, 2024. "Regional-privacy-preserving operation of networked microgrids: Edge-cloud cooperative learning with differentiated policies," Applied Energy, Elsevier, vol. 370(C).
    3. Ge, Pudong & Teng, Fei & Konstantinou, Charalambos & Hu, Shiyan, 2022. "A resilience-oriented centralised-to-decentralised framework for networked microgrids management," Applied Energy, Elsevier, vol. 308(C).
    4. Zhu, Junpeng & Huang, Yong & Lu, Shuai & Shen, Mengya & Yuan, Yue, 2024. "Incorporating local uncertainty management into distribution system planning: An adaptive robust optimization approach," Applied Energy, Elsevier, vol. 363(C).
    5. Ahmed Rashwan & Alexey Mikhaylov & Tomonobu Senjyu & Mahdiyeh Eslami & Ashraf M. Hemeida & Dina S. M. Osheba, 2023. "Modified Droop Control for Microgrid Power-Sharing Stability Improvement," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    6. Khosravi, Nima & Baghbanzadeh, Rasoul & Oubelaid, Adel & Tostado-Véliz, Marcos & Bajaj, Mohit & Hekss, Zineb & Echalih, Salwa & Belkhier, Youcef & Houran, Mohamad Abou & Aboras, Kareem M., 2023. "A novel control approach to improve the stability of hybrid AC/DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    7. Feng, Wei & Jin, Ming & Liu, Xu & Bao, Yi & Marnay, Chris & Yao, Cheng & Yu, Jiancheng, 2018. "A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools," Applied Energy, Elsevier, vol. 228(C), pages 1656-1668.
    8. Gonzalez-Reina, Antonio Enrique & Garcia-Torres, Felix & Girona-Garcia, Victor & Sanchez-Sanchez-de-Puerta, Alvaro & Jimenez-Romero, F.J. & Jimenez-Hornero, Jorge E., 2024. "Cooperative model predictive control for avoiding critical instants of energy resilience in networked microgrids," Applied Energy, Elsevier, vol. 369(C).
    9. Kandasamy, Jeevitha & Ramachandran, Rajeswari & Veerasamy, Veerapandiyan & Irudayaraj, Andrew Xavier Raj, 2024. "Distributed leader-follower based adaptive consensus control for networked microgrids," Applied Energy, Elsevier, vol. 353(PA).
    10. Yao, Shuai & Gu, Wei & Wu, Jianzhong & Lu, Hai & Zhang, Suhan & Zhou, Yue & Lu, Shuai, 2022. "Dynamic energy flow analysis of the heat-electricity integrated energy systems with a novel decomposition-iteration algorithm," Applied Energy, Elsevier, vol. 322(C).
    11. Mehri Arsoon, Milad & Moghaddas-Tafreshi, Seyed Masoud, 2020. "Peer-to-peer energy bartering for the resilience response enhancement of networked microgrids," Applied Energy, Elsevier, vol. 261(C).
    12. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    13. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    14. Irfan, Muhammad & Deilami, Sara & Huang, Shujuan & Tahir, Tayyab & Veettil, Binesh Puthen, 2024. "Optimizing load frequency control in microgrid with vehicle-to-grid integration in Australia: Based on an enhanced control approach," Applied Energy, Elsevier, vol. 366(C).
    15. Khosravi, N. & Abdolmohammadi, H.R. & Bagheri, S. & Miveh, M.R., 2021. "Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    17. Alghamdi, Baheej & Cañizares, Claudio, 2022. "Frequency and voltage coordinated control of a grid of AC/DC microgrids," Applied Energy, Elsevier, vol. 310(C).
    18. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khosravi, Nima & Oubelaid, Adel, 2025. "Deep learning-driven estimation and multi-objective optimization of lithium-ion battery parameters for enhanced EV/HEV performance," Energy, Elsevier, vol. 320(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    2. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    3. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    4. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Xu, Zheng & Chen, Yue & Sang, Linwei & Qiu, Haifeng & Wu, Zhi & Ye, Hengqing, 2025. "Resilience-oriented planning for microgrid clusters considering P2P energy trading and extreme events," Applied Energy, Elsevier, vol. 388(C).
    6. Mohammed M. Alhaider & Ziad M. Ali & Mostafa H. Mostafa & Shady H. E. Abdel Aleem, 2023. "Economic Viability of NaS Batteries for Optimal Microgrid Operation and Hosting Capacity Enhancement under Uncertain Conditions," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    7. Khosravi, Nima & Dowlatabadi, Masrour & Abdelghany, Muhammad Bakr & Tostado-Véliz, Marcos & Jurado, Francisco, 2024. "Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models," Applied Energy, Elsevier, vol. 356(C).
    8. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    9. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    10. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    11. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    12. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    13. Yu, Sheng & He, Bin & Fang, Lei, 2025. "Multi-step short-term forecasting of photovoltaic power utilizing TimesNet with enhanced feature extraction and a novel loss function," Applied Energy, Elsevier, vol. 388(C).
    14. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    15. Ahmed M. Hussien & Jonghoon Kim & Abdulaziz Alkuhayli & Mohammed Alharbi & Hany M. Hasanien & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado, 2022. "Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    16. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    17. Qianwen Li & Zhilong Chen & Jialin Min & Mengjie Xu & Yanhong Zhan & Wenyue Zhang & Chuanwang Sun, 2024. "Hybrid transaction model for optimizing the distributed power trading market," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    18. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    19. Chengcheng Deng & Xiaodong Shen & Xisheng Tang, 2025. "Optimal Configuration of Mobile–Stationary Hybrid Energy Storage Considering Seismic Hazards," Energies, MDPI, vol. 18(8), pages 1-22, April.
    20. Ma, Cheng & Lei, Shunbo & Chen, Dong & Wang, Chong & Hatziargyriou, Nikos D. & Song, Ziyou, 2025. "Sequential service restoration with grid-interactive flexibility from building AC systems for resilient microgrids under endogenous and exogenous uncertainties," Applied Energy, Elsevier, vol. 377(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924016969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.