IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224039410.html
   My bibliography  Save this article

Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints

Author

Listed:
  • Dong, Xiao-Jian
  • Shen, Jia-Ni
  • Ma, Zi-Feng
  • He, Yi-Jun

Abstract

Optimal scheduling based on accurate power state prediction of key equipment is vital to enhance renewable energy utilization and alleviate charging electricity strain on the main grid in the integrated electric vehicle charging station (EVCS) with photovoltaic (PV) and battery energy storage system (BESS). However, the multi-source power prediction uncertainty of PV and the complex discharging/charging state of power (SOP) constraints of BESS were less explored in previous studies, which might result in suboptimal or even infeasible scheduling. This study proposes a novel stochastic scheduling optimization framework for the PV-BESS-EVCS integrated system. In this framework, a hybrid characterization method is developed to describe the multi-source uncertainty of PV power, and a piecewise linear model is developed to estimate the dynamic SOP constraints of BESS. The effectiveness of the proposed framework is demonstrated by a set of typical scenarios for commercial regions. The results indicate that compared to optimal results in the deterministic model, the proposed framework could improve operational profits by 0.41 % while reducing equivalent carbon emissions and power curtailment rates by 0.61 % and 3.05 %, respectively. It is thus illustrated that the proposed framework could provide a promising solution for the optimal scheduling of the PV-BESS-EVCS integrated system under uncertainty.

Suggested Citation

  • Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2025. "Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039410
    DOI: 10.1016/j.energy.2024.134163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224039410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yan & Fu, Lijun & Zhu, Wanlu & Bao, Xianqiang & Liu, Cang, 2018. "Robust model predictive control for optimal energy management of island microgrids with uncertainties," Energy, Elsevier, vol. 164(C), pages 1229-1241.
    2. Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
    3. Xu, Yuanyuan & Yang, Genke & Luo, Jiliang & He, Jianan & Sun, Haixin, 2022. "A multi-location short-term wind speed prediction model based on spatiotemporal joint learning," Renewable Energy, Elsevier, vol. 183(C), pages 148-159.
    4. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    5. Langenmayr, Uwe & Wang, Weimin & Jochem, Patrick, 2020. "Unit commitment of photovoltaic-battery systems: An advanced approach considering uncertainties from load, electric vehicles, and photovoltaic," Applied Energy, Elsevier, vol. 280(C).
    6. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2022. "Simultaneous operating temperature and output power prediction method for photovoltaic modules," Energy, Elsevier, vol. 260(C).
    7. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    8. Jiao, Feixiang & Ji, Chengda & Zou, Yuan & Zhang, Xudong, 2021. "Tri-stage optimal dispatch for a microgrid in the presence of uncertainties introduced by EVs and PV," Applied Energy, Elsevier, vol. 304(C).
    9. Dong, Xiao-Jian & Shen, Jia-Ni & Liu, Cheng-Wu & Ma, Zi-Feng & He, Yi-Jun, 2024. "Simultaneous capacity configuration and scheduling optimization of an integrated electrical vehicle charging station with photovoltaic and battery energy storage system," Energy, Elsevier, vol. 289(C).
    10. Wang, Jianzhou & Yu, Yue & Zeng, Bo & Lu, Haiyan, 2024. "Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis," Energy, Elsevier, vol. 288(C).
    11. Yang, Yandong & Li, Shufang & Li, Wenqi & Qu, Meijun, 2018. "Power load probability density forecasting using Gaussian process quantile regression," Applied Energy, Elsevier, vol. 213(C), pages 499-509.
    12. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    13. Zhou, Siyu & Han, Yang & Mahmoud, Karar & Darwish, Mohamed M.F. & Lehtonen, Matti & Yang, Ping & Zalhaf, Amr S., 2023. "A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation," Applied Energy, Elsevier, vol. 348(C).
    14. Roberts, Justo José & Mendiburu Zevallos, Andrés A. & Cassula, Agnelo Marotta, 2017. "Assessment of photovoltaic performance models for system simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1104-1123.
    15. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    16. Guo, Chenyu & Wang, Xin & Zheng, Yihui & Zhang, Feng, 2022. "Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    17. Lei, Kaixuan & Chang, Jianxia & Wang, Xuebin & Guo, Aijun & Wang, Yimin & Ren, Chengqing, 2023. "Peak shaving and short-term economic operation of hydro-wind-PV hybrid system considering the uncertainty of wind and PV power," Renewable Energy, Elsevier, vol. 215(C).
    18. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    19. Wang, Frank Yifan & Chen, Zhuoxu & Hu, Zechun, 2024. "Comprehensive optimization of electrical heavy-duty truck battery swap stations with a SOC-dependent charge scheduling method," Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    2. Wang, Jiawei & Wang, Yi & Qiu, Dawei & Su, Hanguang & Strbac, Goran & Gao, Zhiwei, 2025. "Resilient energy management of a multi-energy building under low-temperature district heating: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 378(PA).
    3. Zhang, Xiaofeng & Liu, Yuting & Zhan, Yu & Yan, Renshi & Mei, Jin & Fu, Ang & Jiao, Fan & Zeng, Rong, 2024. "Multi-scenario optimization and performance evaluation of integrated energy system considering co-scheduling of EVs and stationary energy storage," Renewable Energy, Elsevier, vol. 237(PD).
    4. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
    5. Slawomir Gulkowski, 2023. "Modeling and Experimental Studies of the Photovoltaic System Performance in Climate Conditions of Poland," Energies, MDPI, vol. 16(20), pages 1-16, October.
    6. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2022. "Simultaneous operating temperature and output power prediction method for photovoltaic modules," Energy, Elsevier, vol. 260(C).
    7. Dong, Xiao-Jian & Shen, Jia-Ni & Liu, Cheng-Wu & Ma, Zi-Feng & He, Yi-Jun, 2024. "Simultaneous capacity configuration and scheduling optimization of an integrated electrical vehicle charging station with photovoltaic and battery energy storage system," Energy, Elsevier, vol. 289(C).
    8. Yan, Yi & Wang, Xuerui & Li, Ke & Li, Chengdong & Tian, Chongyi & Shao, Zhuliang & Li, Ji, 2024. "Stochastic optimisation of district integrated energy systems based on a hybrid probability forecasting model," Energy, Elsevier, vol. 306(C).
    9. Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
    10. Jiao, Feixiang & Zou, Yuan & Zhang, Xudong & Zhang, Bin, 2022. "Online optimal dispatch based on combined robust and stochastic model predictive control for a microgrid including EV charging station," Energy, Elsevier, vol. 247(C).
    11. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    12. Gonçalves, Juliana E. & van Hooff, Twan & Saelens, Dirk, 2021. "Simulating building integrated photovoltaic facades: Comparison to experimental data and evaluation of modelling complexity," Applied Energy, Elsevier, vol. 281(C).
    13. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    14. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    15. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    16. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    17. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    18. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    19. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    20. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.