IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920314227.html
   My bibliography  Save this article

Unit commitment of photovoltaic-battery systems: An advanced approach considering uncertainties from load, electric vehicles, and photovoltaic

Author

Listed:
  • Langenmayr, Uwe
  • Wang, Weimin
  • Jochem, Patrick

Abstract

Increasing use of renewable energy leads to change in load flows from predictable generation and inelastic demand to more volatile and price-elastic patterns, especially on the distribution level. New applications such as electric vehicles further increase the demand of electricity. Therefore, a reliable, local control of load flexibilities is a key competence of future system operators. This paper presents a central planner–decentral operator approach to schedule local electricity flows. The central planner conducts a two-stage optimization to derive the demand limit and a corresponding battery schedule, while the decentral operator simply applies the battery schedule and heuristically reacts to unforeseen deviations between the forecasted and actual loads and power generation. Privacy concerns of the decentral planner are avoided as no private information is shared with the central planner. A relaxation factor and a reserve capacity for the battery are derived from a Monte Carlo simulation to consider the underlying uncertainties of load, photovoltaic generation, and electric vehicle charging. Our results show that the load of the decentral operator can be limited reliably for six days of the considered week and a maximum reduction of 2.6 kW (52%) of peakload has been accomplished. Furthermore, the approach is suitable for systems with limited computational resources at the place of the decentral operator, which is the common case in this field.

Suggested Citation

  • Langenmayr, Uwe & Wang, Weimin & Jochem, Patrick, 2020. "Unit commitment of photovoltaic-battery systems: An advanced approach considering uncertainties from load, electric vehicles, and photovoltaic," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314227
    DOI: 10.1016/j.apenergy.2020.115972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ratnam, Elizabeth L. & Weller, Steven R. & Kellett, Christopher M., 2015. "An optimization-based approach to scheduling residential battery storage with solar PV: Assessing customer benefit," Renewable Energy, Elsevier, vol. 75(C), pages 123-134.
    2. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    3. Appino, Riccardo Remo & González Ordiano, Jorge Ángel & Mikut, Ralf & Faulwasser, Timm & Hagenmeyer, Veit, 2018. "On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages," Applied Energy, Elsevier, vol. 210(C), pages 1207-1218.
    4. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    5. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    6. Matallanas, E. & Castillo-Cagigal, M. & Gutiérrez, A. & Monasterio-Huelin, F. & Caamaño-Martín, E. & Masa, D. & Jiménez-Leube, J., 2012. "Neural network controller for Active Demand-Side Management with PV energy in the residential sector," Applied Energy, Elsevier, vol. 91(1), pages 90-97.
    7. Jochem, Patrick & Schönfelder, Martin & Fichtner, Wolf, 2015. "An efficient two-stage algorithm for decentralized scheduling of micro-CHP units," European Journal of Operational Research, Elsevier, vol. 245(3), pages 862-874.
    8. Zsolt Ugray & Leon Lasdon & John Plummer & Fred Glover & James Kelly & Rafael Martí, 2007. "Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 328-340, August.
    9. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
    10. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2019. "Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics," Applied Energy, Elsevier, vol. 242(C), pages 769-781.
    11. Reihani, Ehsan & Motalleb, Mahdi & Ghorbani, Reza & Saad Saoud, Lyes, 2016. "Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration," Renewable Energy, Elsevier, vol. 86(C), pages 1372-1379.
    12. Lopes, Rui Amaral & Martins, João & Aelenei, Daniel & Lima, Celson Pantoja, 2016. "A cooperative net zero energy community to improve load matching," Renewable Energy, Elsevier, vol. 93(C), pages 1-13.
    13. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    14. Dengiz, Thomas & Jochem, Patrick, 2020. "Decentralized optimization approaches for using the load flexibility of electric heating devices," Energy, Elsevier, vol. 193(C).
    15. Ranaweera, Iromi & Midtgård, Ole-Morten, 2016. "Optimization of operational cost for a grid-supporting PV system with battery storage," Renewable Energy, Elsevier, vol. 88(C), pages 262-272.
    16. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2018. "Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan," Renewable Energy, Elsevier, vol. 127(C), pages 514-523.
    17. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    18. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    19. Di Giorgio, Alessandro & Pimpinella, Laura, 2012. "An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management," Applied Energy, Elsevier, vol. 96(C), pages 92-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Liu, Yu & Wu, Chuanshen & Wang, Sicheng, 2021. "Congestion-aware robust security constrained unit commitment model for AC-DC grids," Applied Energy, Elsevier, vol. 304(C).
    2. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    3. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    4. Etedadi, Farshad & Kelouwani, Sousso & Agbossou, Kodjo & Henao, Nilson & Laurencelle, François, 2023. "Consensus and sharing based distributed coordination of home energy management systems with demand response enabled baseboard heaters," Applied Energy, Elsevier, vol. 336(C).
    5. Ma, Jinpeng & Wu, Shengbin & Raad, Erfan Ahli, 2023. "Renewable source uncertainties effects in multi-carrier microgrids based on an intelligent algorithm," Energy, Elsevier, vol. 265(C).
    6. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    2. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    3. Frank Fiedler & Joaquin Coll Matas, 2022. "Techno-Economic Analysis of Grid-Connected PV Battery Solutions for Holiday Homes in Sweden," Energies, MDPI, vol. 15(8), pages 1-21, April.
    4. Lu, Qing & Lü, Shuaikang & Leng, Yajun & Zhang, Zhixin, 2020. "Optimal household energy management based on smart residential energy hub considering uncertain behaviors," Energy, Elsevier, vol. 195(C).
    5. Babacan, Oytun & Ratnam, Elizabeth L. & Disfani, Vahid R. & Kleissl, Jan, 2017. "Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration," Applied Energy, Elsevier, vol. 205(C), pages 1384-1393.
    6. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    7. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    8. Elma, Onur & Selamogullari, Ugur Savas, 2015. "A new home energy management algorithm with voltage control in a smart home environment," Energy, Elsevier, vol. 91(C), pages 720-731.
    9. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    10. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    11. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    12. Thomas, Dimitrios & D’Hoop, Gaspard & Deblecker, Olivier & Genikomsakis, Konstantinos N. & Ioakimidis, Christos S., 2020. "An integrated tool for optimal energy scheduling and power quality improvement of a microgrid under multiple demand response schemes," Applied Energy, Elsevier, vol. 260(C).
    13. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    14. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    15. Giovani Almeida Dávi & José López de Asiain & Juan Solano & Estefanía Caamaño-Martín & César Bedoya, 2017. "Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management," Energies, MDPI, vol. 10(8), pages 1-24, August.
    16. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    17. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    18. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Yin, He, 2019. "Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads," Energy, Elsevier, vol. 181(C), pages 897-907.
    19. Kotarela, F. & Kyritsis, A. & Papanikolaou, N. & Kalogirou, S.A., 2021. "Enhanced nZEB concept incorporating a sustainable Grid Support Scheme," Renewable Energy, Elsevier, vol. 169(C), pages 714-725.
    20. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.