IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4614-d1738154.html
   My bibliography  Save this article

A Two-Stage Stochastic Unit Commitment Model for Sustainable Large-Scale Power System Planning Under Renewable and EV Variability

Author

Listed:
  • Sukita Kaewpasuk

    (Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand)

  • Boonyarit Intiyot

    (Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand)

  • Chawalit Jeenanunta

    (School of Management Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand)

Abstract

The increasing integration of renewable energy sources and the widespread adoption of electric vehicles have introduced considerable uncertainty into the operation of large-scale power systems. Traditional deterministic unit commitment models are insufficient for managing such variability in a reliable and cost-effective manner. This study proposes a two-stage stochastic unit commitment model that captures uncertainties in solar photovoltaic generation, electric vehicle charging demand, and load fluctuations using a mixed-integer linear programming framework with recourse. The model is applied to Thailand’s national power system, comprising 171 generators across five regions, to assess its scalability for sustainable large-scale planning. Results indicate that the stochastic model significantly enhances system reliability across most demand profiles. Under the Winter Weekday group, the number of lacking scenarios decreases by 76.92 percent and the number of missing periods decreases by 78.57 percent, while the average and maximum lack percentages are reduced by 56.32 percent and 72.61 percent, respectively. Improvements are even greater under the Rainy Weekday group, where lacking scenarios and periods decline by more than 92 percent and the maximum lack percentage falls by over 98 percent, demonstrating the model’s robustness under volatile solar output and load conditions. Although minor anomalies are observed, such as slight increases in average and maximum lack percentages in the Summer Weekday group, these are minimal and likely attributable to randomness in scenario generation or boundary effects in optimization. Overall, the stochastic model provides substantial advantages in managing uncertainty, achieving notable improvements in reliability with only modest increases in operational cost and computational time. The findings confirm that the proposed approach offers a robust and practical framework for supporting sustainable and resilient power systems in regions with high variability in both generation and demand.

Suggested Citation

  • Sukita Kaewpasuk & Boonyarit Intiyot & Chawalit Jeenanunta, 2025. "A Two-Stage Stochastic Unit Commitment Model for Sustainable Large-Scale Power System Planning Under Renewable and EV Variability," Energies, MDPI, vol. 18(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4614-:d:1738154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4614/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4614/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Venkatesh, Bala & Shekeew, Mohamed Ibrahim Abdelaziz & Ma, Jessie, 2025. "Feasibility-guaranteed machine learning unit commitment: Fuzzy Optimization approaches," Applied Energy, Elsevier, vol. 379(C).
    2. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    3. Sai Sudharshan Ravi & Muhammad Aziz, 2022. "Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives," Energies, MDPI, vol. 15(2), pages 1-27, January.
    4. Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Improved Genetic Algorithm-Based Unit Commitment Considering Uncertainty Integration Method," Energies, MDPI, vol. 11(6), pages 1-18, May.
    5. Langenmayr, Uwe & Wang, Weimin & Jochem, Patrick, 2020. "Unit commitment of photovoltaic-battery systems: An advanced approach considering uncertainties from load, electric vehicles, and photovoltaic," Applied Energy, Elsevier, vol. 280(C).
    6. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    2. Latify, Mohammad Amin & Mokhtari, Ali & Alavi-Eshkaftaki, Amin & Rajaei Najafabadi, Fatemeh & Hashemian, Seyed Nasrollah & Khaleghizadeh, Ali & Nezamabadi, Hossein & Yousefi Ramandi, Mostafa & Mozdawa, 2025. "Security-constrained unit commitment: Modeling, solutions and evaluations," Applied Energy, Elsevier, vol. 390(C).
    3. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Liu, Yu & Wu, Chuanshen & Wang, Sicheng, 2021. "Congestion-aware robust security constrained unit commitment model for AC-DC grids," Applied Energy, Elsevier, vol. 304(C).
    4. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    5. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    6. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    7. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    8. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    9. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    10. Chen, Ting & Vandendriessche, Frederik, 2023. "Enabling independent flexibility service providers to participate in electricity markets: A legal analysis of the Belgium case," Utilities Policy, Elsevier, vol. 81(C).
    11. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    12. Leippi, Andre & Fleschutz, Markus & Davis, Kevin & Klingler, Anna-Lena & Murphy, Michael D., 2024. "Optimizing electric vehicle fleet integration in industrial demand response: Maximizing vehicle-to-grid benefits while compensating vehicle owners for battery degradation," Applied Energy, Elsevier, vol. 374(C).
    13. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    14. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    15. Mohammad Masih Sediqi & Mohammed Elsayed Lotfy & Abdul Matin Ibrahimi & Tomonobu Senjyu & Narayanan. K, 2019. "Stochastic Unit Commitment and Optimal Power Trading Incorporating PV Uncertainty," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    16. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    17. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2025. "Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints," Energy, Elsevier, vol. 314(C).
    18. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    19. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    20. Mehrdad Tarafdar-Hagh & Kamran Taghizad-Tavana & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan & Parisa Jafari & Amin Mohammadpour Shotorbani, 2023. "Optimizing Electric Vehicle Operations for a Smart Environment: A Comprehensive Review," Energies, MDPI, vol. 16(11), pages 1-21, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4614-:d:1738154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.