IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p398-d1569597.html
   My bibliography  Save this article

Optimizing Acidic Reductive Leaching for Lithium Recovery: Enhancing Sustainable Lithium Supply for Energy Markets

Author

Listed:
  • Agnieszka Sobianowska-Turek

    (Department of Water and Wastewater Management and Waste Technology, Faculty of Environmental Engineering, Wroclaw University of Technology, 50-370 Wroclaw, Poland)

  • Amelia Zielińska

    (Poltegor Opencast Mining Institute, 51-616 Wroclaw, Poland)

  • Weronika Urbańska

    (Department of Water and Wastewater Management and Waste Technology, Faculty of Environmental Engineering, Wroclaw University of Technology, 50-370 Wroclaw, Poland)

  • Anna Mielniczek

    (Department of Water and Wastewater Management and Waste Technology, Faculty of Environmental Engineering, Wroclaw University of Technology, 50-370 Wroclaw, Poland)

  • Agnieszka Fornalczyk

    (Department of Production Engineering, Faculty of Materials Engineering, Silesian University of Technology, 40-019 Katowice, Poland)

  • Szymon Pawlak

    (Department of Production Engineering, Faculty of Materials Engineering, Silesian University of Technology, 40-019 Katowice, Poland)

  • Tomasz Małysa

    (Department of Production Engineering, Faculty of Materials Engineering, Silesian University of Technology, 40-019 Katowice, Poland)

  • Janusz Cebulski

    (Department of Production Engineering, Faculty of Materials Engineering, Silesian University of Technology, 40-019 Katowice, Poland)

Abstract

The growing demand for lithium, driven by its crucial role in energy storage technologies such as lithium-ion batteries for electric vehicles, renewable energy storage, and portable electronics, is intensifying the need for sustainable extraction methods. While lithium is sourced from both primary and secondary resources, particularly from recycled materials, the recovery from spent lithium-ion batteries remains challenging. This article presents acidic reductive leaching as a promising alternative for lithium extraction from secondary sources and unconventional ores, emphasizing its potential benefits, such as higher recovery rates, faster processing, and adaptability to various waste materials. Notably, this method facilitates the selective recovery of lithium before cobalt and nickel, providing a strategic advantage. This study highlights the lack of optimization studies on leaching conditions (e.g., acid concentration, reducing agents, temperature, and time) that could maximize lithium recovery while minimizing environmental and economic costs. The article aims to investigate and optimize the parameters of acidic reductive leaching for more efficient lithium recovery. Additionally, the results contribute to the principles of the circular economy and sustainable supply chains in the energy sector, providing a method to reduce dependency on geopolitically constrained lithium resources and supporting the global energy transition toward cleaner energy solutions.

Suggested Citation

  • Agnieszka Sobianowska-Turek & Amelia Zielińska & Weronika Urbańska & Anna Mielniczek & Agnieszka Fornalczyk & Szymon Pawlak & Tomasz Małysa & Janusz Cebulski, 2025. "Optimizing Acidic Reductive Leaching for Lithium Recovery: Enhancing Sustainable Lithium Supply for Energy Markets," Energies, MDPI, vol. 18(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:398-:d:1569597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kullmann, Felix & Markewitz, Peter & Kotzur, Leander & Stolten, Detlef, 2022. "The value of recycling for low-carbon energy systems - A case study of Germany's energy transition," Energy, Elsevier, vol. 256(C).
    2. Sai Sudharshan Ravi & Muhammad Aziz, 2022. "Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives," Energies, MDPI, vol. 15(2), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrdad Tarafdar-Hagh & Kamran Taghizad-Tavana & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan & Parisa Jafari & Amin Mohammadpour Shotorbani, 2023. "Optimizing Electric Vehicle Operations for a Smart Environment: A Comprehensive Review," Energies, MDPI, vol. 16(11), pages 1-21, May.
    2. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    3. Mingyu Kang & Bosung Lee & Younsoo Lee, 2025. "A Robust Optimization Approach for E-Bus Charging and Discharging Scheduling with Vehicle-to-Grid Integration," Mathematics, MDPI, vol. 13(9), pages 1-25, April.
    4. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    5. Abdulgader Alsharif & Chee Wei Tan & Razman Ayop & Ahmed Al Smin & Abdussalam Ali Ahmed & Farag Hamed Kuwil & Mohamed Mohamed Khaleel, 2023. "Impact of Electric Vehicle on Residential Power Distribution Considering Energy Management Strategy and Stochastic Monte Carlo Algorithm," Energies, MDPI, vol. 16(3), pages 1-22, January.
    6. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    7. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Gnann, Till & Yu, Songmin & Stute, Judith & Kühnbach, Matthias, 2025. "The value of smart charging at home and its impact on EV market shares – A German case study," Applied Energy, Elsevier, vol. 380(C).
    9. Lehtola, Timo, 2025. "Vehicle-to-grid applications and battery cycle aging: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    10. Wiedemann, Nina & Xin, Yanan & Medici, Vasco & Nespoli, Lorenzo & Suel, Esra & Raubal, Martin, 2024. "Vehicle-to-grid for car sharing - A simulation study for 2030," Applied Energy, Elsevier, vol. 372(C).
    11. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    12. Bauer, Franz & Sterner, Michael, 2025. "Impacts of lifestyle changes on energy demand and greenhouse gas emissions in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    13. Maurizio Sibilla & Esra Kurul, 2023. "Towards Social Understanding of Energy Storage Systems—A Perspective," Energies, MDPI, vol. 16(19), pages 1-11, September.
    14. Tsamara Tsani & Tristan Pelser & Romanos Ioannidis & Rachel Maier & Ruihong Chen & Stanley Risch & Felix Kullmann & Russell McKenna & Detlef Stolten & Jann Michael Weinand, 2025. "Quantifying the trade-offs between renewable energy visibility and system costs," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    15. Swapna Ganapaneni & Srinivasa Varma Pinni & Ch. Rami Reddy & Flah Aymen & Mohammed Alqarni & Basem Alamri & Habib Kraiem, 2022. "Distribution System Service Restoration Using Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-15, April.
    16. Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Pasquale Vizza & Giovanni Brusco & Giuseppe Barone & Gianluca Marano, 2022. "Techno Economic Analysis of Electric Vehicle Grid Integration Aimed to Provide Network Flexibility Services in Italian Regulatory Framework," Energies, MDPI, vol. 15(7), pages 1-34, March.
    17. Mohammad Kamrul Hasan & AKM Ahasan Habib & Shayla Islam & Mohammed Balfaqih & Khaled M. Alfawaz & Dalbir Singh, 2023. "Smart Grid Communication Networks for Electric Vehicles Empowering Distributed Energy Generation: Constraints, Challenges, and Recommendations," Energies, MDPI, vol. 16(3), pages 1-20, January.
    18. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    19. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    20. Qin Chen & Komla Agbenyo Folly, 2022. "Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review," Energies, MDPI, vol. 16(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:398-:d:1569597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.