IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006991.html
   My bibliography  Save this article

A two-stage robust optimal capacity configuration method for charging station integrated with photovoltaic and energy storage system considering vehicle-to-grid and uncertainty

Author

Listed:
  • Lin, Hao
  • Liu, Shilin
  • Liao, Shiwu
  • Wang, Shinong

Abstract

This paper proposes a novel capacity configuration method for charging station integrated with photovoltaic and energy storage system, considering vehicle-to-grid technology and the uncertainties of photovoltaic and electric vehicles’ behavior. Firstly, the improved k-means method is used to cluster the electric vehicles participating in vehicle-to-grid, and then the corresponding scheduling model is established by considering the constraints of schedulable time, charging and discharging power, state of charge and so on. Secondly, for uncertain scenarios, using the predicted charging load obtained through Monte Carlo simulation as the basis for robust optimization, a two-stage robust optimal configuration model with the objective of minimizing the comprehensive cost of investment and operation is established, so as to improve the reliability of the solution by only solving for the worst-case scenario and its uncertainty problem. Finally, the column-and-constraint generation algorithm and Karush-Kuhn-Tucker conditions are used to solve the problem. The study results show that the configuration capacity of energy storage system and the composite cost of investment and operation can be effectively reduced when vehicle-to-grid is considered, meanwhile considering uncertainty can improve the ability of the charging station to resist risks.

Suggested Citation

  • Lin, Hao & Liu, Shilin & Liao, Shiwu & Wang, Shinong, 2025. "A two-stage robust optimal capacity configuration method for charging station integrated with photovoltaic and energy storage system considering vehicle-to-grid and uncertainty," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006991
    DOI: 10.1016/j.energy.2025.135057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jie & Huang, Yuping, 2022. "The short-term optimal resource allocation approach for electric vehicles and V2G service stations," Applied Energy, Elsevier, vol. 319(C).
    2. Min Wang & Xiaobin Dong & Youchun Zhai, 2021. "Optimal Configuration of the Integrated Charging Station for PV and Hydrogen Storage," Energies, MDPI, vol. 14(21), pages 1-12, October.
    3. Guindi, Marina & Kamel, Rashad M., 2024. "Optimal location and sizing of renewable distributed generations and electric vehicle charging stations," Renewable Energy, Elsevier, vol. 235(C).
    4. Vollmuth, Patrick & Wohlschlager, Daniela & Wasmeier, Louisa & Kern, Timo, 2024. "Prospects of electric vehicle V2G multi-use: Profitability and GHG emissions for use case combinations of smart and bidirectional charging today and 2030," Applied Energy, Elsevier, vol. 371(C).
    5. Tian, Jingjing & Jia, Hongfei & Wang, Guanfeng & Huang, Qiuyang & Wu, Ruiyi & Gao, Heyao & Liu, Chao, 2024. "Integrated optimization of charging infrastructure, fleet size and vehicle operation in shared autonomous electric vehicle system considering vehicle-to-grid," Renewable Energy, Elsevier, vol. 229(C).
    6. Liang, Zeyu & Qian, Tao & Korkali, Mert & Glatt, Ruben & Hu, Qinran, 2024. "A Vehicle-to-Grid planning framework incorporating electric vehicle user equilibrium and distribution network flexibility enhancement," Applied Energy, Elsevier, vol. 376(PA).
    7. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    8. Zhouquan Wu & Pradeep Krishna Bhat & Bo Chen, 2023. "Optimal Configuration of Extreme Fast Charging Stations Integrated with Energy Storage System and Photovoltaic Panels in Distribution Networks," Energies, MDPI, vol. 16(5), pages 1-20, March.
    9. Dong, Xiao-Jian & Shen, Jia-Ni & Liu, Cheng-Wu & Ma, Zi-Feng & He, Yi-Jun, 2024. "Simultaneous capacity configuration and scheduling optimization of an integrated electrical vehicle charging station with photovoltaic and battery energy storage system," Energy, Elsevier, vol. 289(C).
    10. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    11. Hammam, Ahmed H. & Nayel, Mohamed A. & Mohamed, Mansour A., 2024. "Optimal design of sizing and allocations for highway electric vehicle charging stations based on a PV system," Applied Energy, Elsevier, vol. 376(PB).
    12. Sun, Chuyu & Zhao, Xiaoli & Qi, Binbin & Xiao, Weihao & Zhang, Hongjun, 2022. "Economic and environmental analysis of coupled PV-energy storage-charging station considering location and scale," Applied Energy, Elsevier, vol. 328(C).
    13. Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Ma, Ziyao & Huang, Jiajin, 2024. "Equilibrium configuration strategy of vehicle-to-grid-based electric vehicle charging stations in low-carbon resilient distribution networks," Applied Energy, Elsevier, vol. 361(C).
    14. Zhou, Siyu & Han, Yang & Mahmoud, Karar & Darwish, Mohamed M.F. & Lehtonen, Matti & Yang, Ping & Zalhaf, Amr S., 2023. "A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation," Applied Energy, Elsevier, vol. 348(C).
    15. Yin, Wanjun & Jia, Leilei & Ji, Jianbo, 2024. "Energy optimal scheduling strategy considering V2G characteristics of electric vehicle," Energy, Elsevier, vol. 294(C).
    16. Xiaogang Pan & Kangli Liu & Jianhua Wang & Yutao Hu & Jianfeng Zhao, 2023. "Capacity Allocation Method Based on Historical Data-Driven Search Algorithm for Integrated PV and Energy Storage Charging Station," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    17. Lehtola, Timo, 2025. "Vehicle-to-grid applications and battery cycle aging: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    18. Zhang, Meijuan & Yan, Qingyou & Guan, Yajuan & Ni, Da & Agundis Tinajero, Gibran David, 2024. "Joint planning of residential electric vehicle charging station integrated with photovoltaic and energy storage considering demand response and uncertainties," Energy, Elsevier, vol. 298(C).
    19. Rao, Yingqing & Yang, Jun & Xiao, Jinxing & Xu, Bingyan & Liu, Wenjing & Li, Yonghui, 2021. "A frequency control strategy for multimicrogrids with V2G based on the improved robust model predictive control," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soliman, Ismail A. & Tulsky, Vladimir & Abd el-Ghany, Hossam A. & ElGebaly, Ahmed E., 2025. "Efficient allocation of capacitors and vehicle-to-grid integration with electric vehicle charging stations in radial distribution networks," Applied Energy, Elsevier, vol. 377(PD).
    2. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2025. "Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints," Energy, Elsevier, vol. 314(C).
    3. Zhang, Xiaofeng & Liu, Yuting & Zhan, Yu & Yan, Renshi & Mei, Jin & Fu, Ang & Jiao, Fan & Zeng, Rong, 2024. "Multi-scenario optimization and performance evaluation of integrated energy system considering co-scheduling of EVs and stationary energy storage," Renewable Energy, Elsevier, vol. 237(PD).
    4. Zhou, Sixun & Yan, Rujing & Zhang, Jing & He, Yu & Geng, Xianxian & Li, Yuanbo & Yu, Changkun, 2025. "Optimizing interaction in renewable-vehicle-microgrid systems: Balancing battery health, user satisfaction, and participation," Renewable Energy, Elsevier, vol. 245(C).
    5. Soliman, Ismail A. & Tulsky, Vladimir & Abd el-Ghany, Hossam A. & ELGebaly, Ahmed E., 2025. "Holistic optimization of electric vehicle charging stations in radial power systems with V2G and DG integration considering fault repairing periods," Applied Energy, Elsevier, vol. 385(C).
    6. Qian, Tao & Liang, Zeyu & Shao, Chengcheng & Guo, Zishan & Hu, Qinran & Wu, Zaijun, 2025. "Unsupervised learning for efficiently distributing EVs charging loads and traffic flows in coupled power and transportation systems," Applied Energy, Elsevier, vol. 377(PB).
    7. Wang, Weijun & Li, Chen & He, Yan & Bai, Haining & Jia, Kaiqing & Kong, Zhe, 2024. "Enhancement of household photovoltaic consumption potential in village microgrid considering electric vehicles scheduling and energy storage system configuration," Energy, Elsevier, vol. 311(C).
    8. He, Li & Wu, Zhixin, 2024. "Advancing sustainable EV charging infrastructure: A hybrid solar-wind fast charging station with demand response," Renewable Energy, Elsevier, vol. 237(PC).
    9. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Guo, Shiliang & He, Jianqi & Ma, Kai & Yang, Jie & Wang, Yaochen & Li, Pengpeng, 2025. "Robust economic dispatch for industrial microgrids with electric vehicle demand response," Renewable Energy, Elsevier, vol. 240(C).
    11. Güven, Aykut Fatih, 2024. "Integrating electric vehicles into hybrid microgrids: A stochastic approach to future-ready renewable energy solutions and management," Energy, Elsevier, vol. 303(C).
    12. Wang, Ziqi & Hou, Sizu, 2023. "A real-time strategy for vehicle-to-station recommendation in battery swapping mode," Energy, Elsevier, vol. 272(C).
    13. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    14. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    15. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    16. Heeyun Lee & Hyunjoong Kim & Hyewon Kim & Hyunsup Kim, 2025. "Optimal Vehicle-to-Grid Charge Scheduling for Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 18(5), pages 1-15, February.
    17. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    18. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    19. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    20. Tan, Bing Qing & Kang, Kai & Zhong, Ray Y., 2023. "Electric vehicle charging infrastructure investment strategy analysis: State-owned versus private parking lots," Transport Policy, Elsevier, vol. 141(C), pages 54-71.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.