IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v385y2025ics030626192500234x.html
   My bibliography  Save this article

Holistic optimization of electric vehicle charging stations in radial power systems with V2G and DG integration considering fault repairing periods

Author

Listed:
  • Soliman, Ismail A.
  • Tulsky, Vladimir
  • Abd el-Ghany, Hossam A.
  • ELGebaly, Ahmed E.

Abstract

Adopting electric vehicles is pivotal for mitigating environmental impacts and enhancing energy sustainability by reducing emissions and fossil fuel reliance in transportation systems. The integration of electric vehicles significantly impacts power grids and increases complexity but offers opportunities for grid stabilization through vehicle-to-grid (V2G) technology. Grid performance can be improved by integrating renewable energy sources (RESs) and reactive power compensation devices. This paper presents a proposed multi-objective function solved using parallel search real-coded genetic algorithm (PSRCGA) for obtaining the optimal placement of electric vehicle charging stations (EVCSs), V2G sharing points, photovoltaic systems (PV), wind farms, and capacitor banks. The multi-objective function aims to minimize the cost function and total energy and maximize power quality indices. The power quality indices are improved within constraints including the voltage stability and voltage deviation index. The constraints are merged with the multi-objective function within a fitness function, implemented considering fault repairing periods (FRP). Load flow analysis is applied on the IEEE 33-bus radial test system and the algorithm is verified on a real system. The system is divided into various zones to depict streets/regions/population distribution. The results affirm the algorithm's reliability across different scenarios and system configurations. Integrating RESs of 40 % in the IEEE 33-bus system decreases the annual active energy loss to 575.40 MWh with simultaneously inserting capacitor banks of 43.24 % reduces the reactive energy loss to 415.10 Mvarh. The system minimum voltage is maintained at 0.903 pu during system reconfiguration in FRP, which is within the allowable voltage limits

Suggested Citation

  • Soliman, Ismail A. & Tulsky, Vladimir & Abd el-Ghany, Hossam A. & ELGebaly, Ahmed E., 2025. "Holistic optimization of electric vehicle charging stations in radial power systems with V2G and DG integration considering fault repairing periods," Applied Energy, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:appene:v:385:y:2025:i:c:s030626192500234x
    DOI: 10.1016/j.apenergy.2025.125504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192500234X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kucevic, Daniel & Englberger, Stefan & Sharma, Anurag & Trivedi, Anupam & Tepe, Benedikt & Schachler, Birgit & Hesse, Holger & Srinivasan, Dipti & Jossen, Andreas, 2021. "Reducing grid peak load through the coordinated control of battery energy storage systems located at electric vehicle charging parks," Applied Energy, Elsevier, vol. 295(C).
    2. Yu, Gang & Ye, Xianming & Gong, Dunwei & Xia, Xiaohua, 2025. "Stochastic planning for transition from shopping mall parking lots to electric vehicle charging stations," Applied Energy, Elsevier, vol. 379(C).
    3. Abu Bakar Siddique & Hossam A. Gabbar, 2023. "Adaptive Mixed-Integer Linear Programming-Based Energy Management System of Fast Charging Station with Nuclear–Renewable Hybrid Energy System," Energies, MDPI, vol. 16(2), pages 1-22, January.
    4. Wang, Mingshen & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2017. "Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1673-1683.
    5. Daneshzand, Farzaneh & Coker, Phil J & Potter, Ben & Smith, Stefan T, 2023. "EV smart charging: How tariff selection influences grid stress and carbon reduction," Applied Energy, Elsevier, vol. 348(C).
    6. Algafri, Mohammed & Alghazi, Anas & Almoghathawi, Yasser & Saleh, Haitham & Al-Shareef, Khaled, 2024. "Smart City Charging Station allocation for electric vehicles using analytic hierarchy process and multiobjective goal-programming," Applied Energy, Elsevier, vol. 372(C).
    7. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    8. Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Ma, Ziyao & Huang, Jiajin, 2024. "Equilibrium configuration strategy of vehicle-to-grid-based electric vehicle charging stations in low-carbon resilient distribution networks," Applied Energy, Elsevier, vol. 361(C).
    9. Soliman, Ismail A. & Tulsky, Vladimir & Abd el-Ghany, Hossam A. & ElGebaly, Ahmed E., 2025. "Efficient allocation of capacitors and vehicle-to-grid integration with electric vehicle charging stations in radial distribution networks," Applied Energy, Elsevier, vol. 377(PD).
    10. Zhou, Siyu & Han, Yang & Mahmoud, Karar & Darwish, Mohamed M.F. & Lehtonen, Matti & Yang, Ping & Zalhaf, Amr S., 2023. "A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation," Applied Energy, Elsevier, vol. 348(C).
    11. Wang, Wei & Sun, Bo & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2020. "An improved min-max power dispatching method for integration of variable renewable energy," Applied Energy, Elsevier, vol. 276(C).
    12. Adetunji, Kayode E. & Hofsajer, Ivan W. & Abu-Mahfouz, Adnan M. & Cheng, Ling, 2022. "An optimization planning framework for allocating multiple distributed energy resources and electric vehicle charging stations in distribution networks," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soliman, Ismail A. & Tulsky, Vladimir & Abd el-Ghany, Hossam A. & ElGebaly, Ahmed E., 2025. "Efficient allocation of capacitors and vehicle-to-grid integration with electric vehicle charging stations in radial distribution networks," Applied Energy, Elsevier, vol. 377(PD).
    2. Qian, Tao & Liang, Zeyu & Shao, Chengcheng & Guo, Zishan & Hu, Qinran & Wu, Zaijun, 2025. "Unsupervised learning for efficiently distributing EVs charging loads and traffic flows in coupled power and transportation systems," Applied Energy, Elsevier, vol. 377(PB).
    3. Shi, Haojie & Xiong, Houbo & Gan, Wei & Lin, Yumian & Guo, Chuangxin, 2025. "Fully distributed planning method for coordinated distribution and urban transportation networks considering three-phase unbalance mitigation," Applied Energy, Elsevier, vol. 377(PA).
    4. Zhang, Wenjie & Gandhi, Oktoviano & Quan, Hao & Rodríguez-Gallegos, Carlos D. & Srinivasan, Dipti, 2018. "A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and electric vehicle coordination," Applied Energy, Elsevier, vol. 229(C), pages 96-110.
    5. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).
    6. Lin, Hao & Liu, Shilin & Liao, Shiwu & Wang, Shinong, 2025. "A two-stage robust optimal capacity configuration method for charging station integrated with photovoltaic and energy storage system considering vehicle-to-grid and uncertainty," Energy, Elsevier, vol. 319(C).
    7. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    8. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    9. Balu, Korra & Mukherjee, V., 2024. "Optimal deployment of electric vehicle charging stations, renewable distributed generation with battery energy storage and distribution static compensator in radial distribution network considering un," Applied Energy, Elsevier, vol. 359(C).
    10. Alessandro Di Giorgio & Emanuele De Santis & Lucia Frettoni & Stefano Felli & Francesco Liberati, 2023. "Electric Vehicle Fast Charging: A Congestion-Dependent Stochastic Model Predictive Control under Uncertain Reference," Energies, MDPI, vol. 16(3), pages 1-16, January.
    11. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2025. "Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints," Energy, Elsevier, vol. 314(C).
    12. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    13. Quintero Fuentes, Abel & Hickman, Mark & Whitehead, Jake, 2025. "Zone substations' readiness to embrace electric vehicle adoption: Brisbane case study," Energy, Elsevier, vol. 322(C).
    14. Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).
    15. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    16. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    17. Powell, Siobhan & Martin, Sonia & Rajagopal, Ram & Azevedo, Inês M.L. & de Chalendar, Jacques, 2024. "Future-proof rates for controlled electric vehicle charging: Comparing multi-year impacts of different emission factor signals," Energy Policy, Elsevier, vol. 190(C).
    18. Li, Jinpeng & Xu, Yinliang & Zhang, Junxiao & Gao, Chong & Sun, Hongbin, 2025. "Distributed EV scheduling in distribution networks with reserve market participation under ambiguous probability distribution," Applied Energy, Elsevier, vol. 383(C).
    19. Sharma, A. & Bhakar, R. & Tiwari, H.P. & Li, R. & Li, F., 2017. "A novel hierarchical contribution factor based model for distribution use-of-system charges," Applied Energy, Elsevier, vol. 208(C), pages 996-1006.
    20. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:385:y:2025:i:c:s030626192500234x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.