IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics096014812402278x.html
   My bibliography  Save this article

Robust economic dispatch for industrial microgrids with electric vehicle demand response

Author

Listed:
  • Guo, Shiliang
  • He, Jianqi
  • Ma, Kai
  • Yang, Jie
  • Wang, Yaochen
  • Li, Pengpeng

Abstract

The uncoordinated charging and discharging behavior of electric vehicles (EVs) will affect the economy and reliability of the industrial microgrid (IMG). Demand response (DR) program provides a promising approach to address these challenges, as coordinating EVs and industrial loads can enhance microgrid’s flexibility. However, the impact of real-time market electricity price uncertainty on DR cannot be ignored. To tackle this issue, this study develops a scheduling model aimed at minimizing the total operational costs of IMG. The proposed model integrates bidirectional energy trading involving renewable energy, EVs, and energy storage systems, and sets priority and penalty costs to different power types connected to the grid. Furthermore, a comprehensive DR program combines price-based demand response and incentives from microgrid operators is proposed, and the impact of electricity price on scheduling is analyzed. A robust optimization method is employed to address electricity price uncertainty, while nonlinear terms are linearized to construct a mixed integer linear model. Simulation results show that under electricity price uncertainty, the proposed strategy reduces microgrid operating costs by 10.01% and improves local consumption rate of renewable energy to 98.72% compared to the case without considering DR program. These results confirm the effectiveness of the proposed model.

Suggested Citation

  • Guo, Shiliang & He, Jianqi & Ma, Kai & Yang, Jie & Wang, Yaochen & Li, Pengpeng, 2025. "Robust economic dispatch for industrial microgrids with electric vehicle demand response," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s096014812402278x
    DOI: 10.1016/j.renene.2024.122210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812402278X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weiqi Pan & Bokang Zou & Fengtao Li & Yifu Luo & Qirui Chen & Yuanshi Zhang & Yang Li, 2024. "Collaborative Operation Optimization Scheduling Strategy of Electric Vehicle and Steel Plant Considering V2G," Energies, MDPI, vol. 17(11), pages 1-14, May.
    2. Wu, Yan & Aziz, Syed Mahfuzul & Haque, Mohammed H., 2023. "Techno-economic modelling for energy cost minimisation of a university campus to support electric vehicle charging with photovoltaic capacity optimisation," Renewable Energy, Elsevier, vol. 219(P1).
    3. Yubo Wang & Weiqing Sun, 2024. "A Two-Stage Robust Pricing Strategy for Electric Vehicle Aggregators Considering Dual Uncertainty in Electricity Demand and Real-Time Electricity Prices," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    4. Yun, Lingxiang & Xiao, Minkun & Li, Lin, 2022. "Vehicle-to-manufacturing (V2M) system: A novel approach to improve energy demand flexibility for demand response towards sustainable manufacturing," Applied Energy, Elsevier, vol. 323(C).
    5. Lyu, Xiangmei & Liu, Tianqi & Liu, Xuan & He, Chuan & Nan, Lu & Zeng, Hong, 2023. "Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid," Energy, Elsevier, vol. 263(PB).
    6. Tian, Jingjing & Jia, Hongfei & Wang, Guanfeng & Huang, Qiuyang & Wu, Ruiyi & Gao, Heyao & Liu, Chao, 2024. "Integrated optimization of charging infrastructure, fleet size and vehicle operation in shared autonomous electric vehicle system considering vehicle-to-grid," Renewable Energy, Elsevier, vol. 229(C).
    7. Jianying Li & Minsheng Yang & Yuexing Zhang & Jianqi Li & Jianquan Lu, 2023. "Micro-Grid Day-Ahead Stochastic Optimal Dispatch Considering Multiple Demand Response and Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-15, April.
    8. Sahin, Habip & Esen, Hikmet, 2024. "Well-to-Wheel emissions of electric vehicles in Türkiye and emission mitigation by renewable penetration," Renewable Energy, Elsevier, vol. 235(C).
    9. Nojavan, Sayyad & Najafi-Ghalelou, Afshin & Majidi, Majid & Zare, Kazem, 2018. "Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach," Energy, Elsevier, vol. 142(C), pages 250-257.
    10. Leippi, Andre & Fleschutz, Markus & Davis, Kevin & Klingler, Anna-Lena & Murphy, Michael D., 2024. "Optimizing electric vehicle fleet integration in industrial demand response: Maximizing vehicle-to-grid benefits while compensating vehicle owners for battery degradation," Applied Energy, Elsevier, vol. 374(C).
    11. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    12. Castle, Jennifer L. & Hendry, David F., 2024. "Five sensitive intervention points to achieve climate neutrality by 2050, illustrated by the UK," Renewable Energy, Elsevier, vol. 226(C).
    13. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    14. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    15. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    16. Zhang, Meijuan & Yan, Qingyou & Guan, Yajuan & Ni, Da & Agundis Tinajero, Gibran David, 2024. "Joint planning of residential electric vehicle charging station integrated with photovoltaic and energy storage considering demand response and uncertainties," Energy, Elsevier, vol. 298(C).
    17. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    18. Li, Ruiqi & Ren, Hongbo & Wu, Qiong & Li, Qifen & Gao, Weijun, 2024. "Cooperative economic dispatch of EV-HV coupled electric-hydrogen integrated energy system considering V2G response and carbon trading," Renewable Energy, Elsevier, vol. 227(C).
    19. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2021. "Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles," Applied Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Yuxing Yuan & Su Yan & Hang Cao & Tao Du, 2025. "Advances in Modeling and Optimization of Intelligent Power Systems Integrating Renewable Energy in the Industrial Sector: A Multi-Perspective Review," Energies, MDPI, vol. 18(10), pages 1-50, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    2. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    3. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    4. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    5. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    6. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    7. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Contreras, Javier & Lehtonen, Matti & Leonowicz, Zbigniew, 2022. "The role of EV based peer-to-peer transactive energy hubs in distribution network optimization," Applied Energy, Elsevier, vol. 319(C).
    8. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    10. Lin, Hao & Liu, Shilin & Liao, Shiwu & Wang, Shinong, 2025. "A two-stage robust optimal capacity configuration method for charging station integrated with photovoltaic and energy storage system considering vehicle-to-grid and uncertainty," Energy, Elsevier, vol. 319(C).
    11. Zamani Gargari, Milad & Ghaffarpour, Reza, 2020. "Reliability evaluation of multi-carrier energy system with different level of demands under various weather situation," Energy, Elsevier, vol. 196(C).
    12. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2022. "A medium-term hybrid IGDT-Robust optimization model for optimal self scheduling of multi-carrier energy systems," Energy, Elsevier, vol. 238(PA).
    13. Gao, Yuan & Tahir, Mustafa & Siano, Pierluigi & Bi, Yue & Hu, Sile & Yang, Jiaqiang, 2025. "Optimization of renewable energy-based integrated energy systems: A three-stage stochastic robust model," Applied Energy, Elsevier, vol. 377(PD).
    14. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    15. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    16. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    17. Liu, Qian & Li, Wanjun & Zhao, Zhen & Jian, Gan, 2024. "Optimal operation of coordinated multi-carrier energy hubs for integrated electricity and gas networks," Energy, Elsevier, vol. 288(C).
    18. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    19. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    20. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s096014812402278x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.