IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v272y2023ics0360544223005480.html
   My bibliography  Save this article

A real-time strategy for vehicle-to-station recommendation in battery swapping mode

Author

Listed:
  • Wang, Ziqi
  • Hou, Sizu

Abstract

It is significant for electric vehicles (EVs) to swap their depleted batteries in the appropriate battery swapping stations because of the limited number of fully charged batteries. This study presents a real-time optimization strategy for recommending an optimal station for the EV upon its swapping request. The strategy aims to save the EV owners’ time lost due to swapping, while improving the operational economy and stability of battery swapping stations and the distribution network. In this strategy, rolling optimization and Lyapunov optimization from two different time scales are combined. In particular, swapping demand is allocated by rolling optimization on a large time scale with predictive information. With the optimal allocation scheme, Lyapunov optimization theory is employed on a small time scale to transform the complex recommendation challenge into convex quadratic programming. Different recommendation strategies are compared in the Beijing traffic network and IEEE 33-bus system. Simulations suggest that our strategy achieves better results in terms of operational performance and solving speed.

Suggested Citation

  • Wang, Ziqi & Hou, Sizu, 2023. "A real-time strategy for vehicle-to-station recommendation in battery swapping mode," Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005480
    DOI: 10.1016/j.energy.2023.127154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223005480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jie & Huang, Yuping, 2022. "The short-term optimal resource allocation approach for electric vehicles and V2G service stations," Applied Energy, Elsevier, vol. 319(C).
    2. Wu, Chuantao & Lin, Xiangning & Sui, Quan & Wang, Zhixun & Feng, Zhongnan & Li, Zhengtian, 2021. "Two-stage self-scheduling of battery swapping station in day-ahead energy and frequency regulation markets," Applied Energy, Elsevier, vol. 283(C).
    3. Dreyfuss, Michael & Giat, Yahel, 2018. "Optimal allocation of spares to maximize the window fill rate in a two-echelon exchangeable-item repair system," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1053-1062.
    4. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    5. Sun, Bo & Sun, Xu & Tsang, Danny H.K. & Whitt, Ward, 2019. "Optimal battery purchasing and charging strategy at electric vehicle battery swap stations," European Journal of Operational Research, Elsevier, vol. 279(2), pages 524-539.
    6. Yan, Jie & Menghwar, Mohan & Asghar, Ehtisham & Kumar Panjwani, Manoj & Liu, Yongqian, 2019. "Real-time energy management for a smart-community microgrid with battery swapping and renewables," Applied Energy, Elsevier, vol. 238(C), pages 180-194.
    7. Liu, Xinrui & Hou, Min & Sun, Siluo & Wang, Jiawei & Sun, Qiuye & Dong, Chaoyu, 2022. "Multi-time scale optimal scheduling of integrated electricity and district heating systems considering thermal comfort of users: An enhanced-interval optimization method," Energy, Elsevier, vol. 254(PB).
    8. Feng, Jiawei & Hou, Shengya & Yu, Lijun & Dimov, Nikolay & Zheng, Pei & Wang, Chunping, 2020. "Optimization of photovoltaic battery swapping station based on weather/traffic forecasts and speed variable charging," Applied Energy, Elsevier, vol. 264(C).
    9. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    10. Sofia Panagiotidou, 2020. "Joint optimization of spare parts ordering and age-based preventive replacement," International Journal of Production Research, Taylor & Francis Journals, vol. 58(20), pages 6283-6299, October.
    11. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    12. Liang, Yanni & Cai, Hua & Zou, Guilin, 2021. "Configuration and system operation for battery swapping stations in Beijing," Energy, Elsevier, vol. 214(C).
    13. Dreyfuss, Michael & Giat, Yahel, 2017. "Optimal spares allocation to an exchangeable-item repair system with tolerable wait," European Journal of Operational Research, Elsevier, vol. 261(2), pages 584-594.
    14. Michael Dreyfuss & Yahel Giat, 2018. "Window Fill Rate in a Two-Echelon Exchangeable-Item Repair-System," Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 293-299, Springer.
    15. Dreyfuss, Michael & Giat, Yahel, 2019. "Allocating spares to maximize the window fill rate in a periodic review inventory system," International Journal of Production Economics, Elsevier, vol. 214(C), pages 151-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    2. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    3. García-Benito, Juan Carlos & Martín-Peña, María-Luz, 2021. "A redistribution model with minimum backorders of spare parts: A proposal for the defence sector," European Journal of Operational Research, Elsevier, vol. 291(1), pages 178-193.
    4. Dreyfuss, Michael & Giat, Yahel, 2019. "Allocating spares to maximize the window fill rate in a periodic review inventory system," International Journal of Production Economics, Elsevier, vol. 214(C), pages 151-162.
    5. Zhang, Shuo & Li, Xinxin & Li, Yingzi & Zheng, Yidan & Liu, Jie, 2023. "A green-fitting dispatching model of station cluster for battery swapping under charging-discharging mode," Energy, Elsevier, vol. 276(C).
    6. Basten, Rob J.I. & Ryan, Jennifer K., 2019. "The value of maintenance delay flexibility for improved spare parts inventory management," European Journal of Operational Research, Elsevier, vol. 278(2), pages 646-657.
    7. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2023. "Optimal pricing strategy for electric vehicle battery swapping: Pay-per-swap or subscription?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    8. Minan Tang & Chenchen Zhang & Yaqi Zhang & Yaguang Yan & Wenjuan Wang & Bo An, 2024. "A Dual-Layer MPC of Coordinated Control of Battery Load Demand and Grid-Side Supply Matching at Electric Vehicle Swapping Stations," Energies, MDPI, vol. 17(4), pages 1-26, February.
    9. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
    10. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2022. "Cooperative operation of battery swapping stations and charging stations with electricity and carbon trading," Energy, Elsevier, vol. 254(PA).
    11. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    12. Yongzhong Wu & Siyi Zhuge & Guoxin Han & Wei Xie, 2022. "Economics of Battery Swapping for Electric Vehicles—Simulation-Based Analysis," Energies, MDPI, vol. 15(5), pages 1-18, February.
    13. Yang, Jie & Liu, Wei & Ma, Kai & Yue, Zhiyuan & Zhu, Anhu & Guo, Shiliang, 2023. "An optimal battery allocation model for battery swapping station of electric vehicles," Energy, Elsevier, vol. 272(C).
    14. Fawad Azeem & Bakhtawar Irshad & Hasan A. Zidan & Ghous Bakhsh Narejo & Muhammad Imtiaz Hussain & Tareq Manzoor, 2023. "Design and Analysis of a Peak Time Estimation Framework for Vehicle Occurrences at Solar Photovoltaic and Grid-Based Battery-Swappable Charging Stations," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    15. Yu Feng & Xiaochun Lu, 2021. "Construction Planning and Operation of Battery Swapping Stations for Electric Vehicles: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-19, December.
    16. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    17. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    18. Wang, Yang & Lai, Kexing & Chen, Fengyun & Li, Zhengming & Hu, Chunhua, 2019. "Shadow price based co-ordination methods of microgrids and battery swapping stations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Ahmadi Jirdehi, Mehdi & Sohrabi Tabar, Vahid, 2023. "Risk-aware energy management of a microgrid integrated with battery charging and swapping stations in the presence of renewable resources high penetration, crypto-currency miners and responsive loads," Energy, Elsevier, vol. 263(PA).
    20. Kaifu Yuan & Chao Li & Guangqiang Wu, 2023. "Study on Vehicle Supply Chain Operation Mode Selection Based on Battery Leasing and Battery Swapping Services," Mathematics, MDPI, vol. 11(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.