IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i2p646-657.html
   My bibliography  Save this article

The value of maintenance delay flexibility for improved spare parts inventory management

Author

Listed:
  • Basten, Rob J.I.
  • Ryan, Jennifer K.

Abstract

Capital assets are typically maintained by replacing components with spare parts. Often, there is flexibility to delay planned, preventive maintenance when spare parts are required to perform more urgent unplanned, corrective maintenance. In this case, keeping a single stock of inventory to satisfy both types of demand can be beneficial. Therefore, we study a periodic review inventory system with a single stocking point and a zero replenishment lead time, used to meet lower-priority demands that are planned, as well as stochastic, high-priority demands. We study the impact of flexibility in performing planned maintenance on the optimal inventory policy. When planned maintenance may be delayed at most once, i.e., for one period, a myopic policy is optimal. When it may be delayed to the next period for an unlimited number of times, we characterize the structure of the optimal policy. We further propose two extensions, one in which delayed planned maintenance may become unplanned and one in which the total maintenance delay costs are increasing and convex in the number of delayed maintenance actions. Numerically, we find that allowing a single delay provides a system performance very close to that when unlimited delays are allowed. This result becomes even stronger in the context of the two model extensions. These results are important for practice, since maintenance managers are unlikely to accept the unlimited delay policy, while the one delay policy is likely to be more acceptable. Finally, we develop myopic heuristic policies and demonstrate that they perform quite close to optimal.

Suggested Citation

  • Basten, Rob J.I. & Ryan, Jennifer K., 2019. "The value of maintenance delay flexibility for improved spare parts inventory management," European Journal of Operational Research, Elsevier, vol. 278(2), pages 646-657.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:646-657
    DOI: 10.1016/j.ejor.2019.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719303431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.
    2. Oguzhan Vicil & Peter Jackson, 2016. "Computationally efficient optimization of stock pooling and allocation levels for two-demand-classes under general lead time distributions," IISE Transactions, Taylor & Francis Journals, vol. 48(10), pages 955-974, October.
    3. Tan, Tarkan & Gullu, Refik & Erkip, Nesim, 2007. "Modelling imperfect advance demand information and analysis of optimal inventory policies," European Journal of Operational Research, Elsevier, vol. 177(2), pages 897-923, March.
    4. Gabor, Adriana F. & van Vianen, Lars A. & Yang, Guangyuan & Axsäter, Sven, 2018. "A base-stock inventory model with service differentiation and response time guarantees," European Journal of Operational Research, Elsevier, vol. 269(3), pages 900-908.
    5. Donald M. Topkis, 1968. "Optimal Ordering and Rationing Policies in a Nonstationary Dynamic Inventory Model with n Demand Classes," Management Science, INFORMS, vol. 15(3), pages 160-176, November.
    6. A A Kranenburg & G J van Houtum, 2008. "Service differentiation in spare parts inventory management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 946-955, July.
    7. Vinayak Deshpande & Morris A. Cohen & Karen Donohue, 2003. "A Threshold Inventory Rationing Policy for Service-Differentiated Demand Classes," Management Science, INFORMS, vol. 49(6), pages 683-703, June.
    8. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    9. Van Horenbeek, Adriaan & Buré, Jasmine & Cattrysse, Dirk & Pintelon, Liliane & Vansteenwegen, Pieter, 2013. "Joint maintenance and inventory optimization systems: A review," International Journal of Production Economics, Elsevier, vol. 143(2), pages 499-508.
    10. R. Dekker & R.M. Hill & M.J. Kleijn & R.H. Teunter, 2002. "On the (S − 1, S) lost sales inventory model with priority demand classes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 593-610, September.
    11. Vinayak Deshpande & Ananth V. Iyer & Richard Cho, 2006. "Efficient Supply Chain Management at the U.S. Coast Guard Using Part-Age Dependent Supply Replenishment Policies," Operations Research, INFORMS, vol. 54(6), pages 1028-1040, December.
    12. Arthur F. Veinott, 1965. "Optimal Policy in a Dynamic, Single Product, Nonstationary Inventory Model with Several Demand Classes," Operations Research, INFORMS, vol. 13(5), pages 761-778, October.
    13. Dreyfuss, Michael & Giat, Yahel, 2017. "Optimal spares allocation to an exchangeable-item repair system with tolerable wait," European Journal of Operational Research, Elsevier, vol. 261(2), pages 584-594.
    14. Matthew J. Sobel & Rachel Q. Zhang, 2001. "Inventory Policies for Systems with Stochastic and Deterministic Demand," Operations Research, INFORMS, vol. 49(1), pages 157-162, February.
    15. Rema Hariharan & Paul Zipkin, 1995. "Customer-Order Information, Leadtimes, and Inventories," Management Science, INFORMS, vol. 41(10), pages 1599-1607, October.
    16. Dreyfuss, Michael & Giat, Yahel, 2018. "Optimal allocation of spares to maximize the window fill rate in a two-echelon exchangeable-item repair system," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1053-1062.
    17. Guillermo Gallego & Özalp Özer, 2001. "Integrating Replenishment Decisions with Advance Demand Information," Management Science, INFORMS, vol. 47(10), pages 1344-1360, October.
    18. Qing Ding & Panos Kouvelis & Joseph Milner, 2016. "Inventory Rationing for Multiple Class Demand under Continuous Review," Production and Operations Management, Production and Operations Management Society, vol. 25(8), pages 1344-1362, August.
    19. Katia C. Frank & Rachel Q. Zhang & Izak Duenyas, 2003. "Optimal Policies for Inventory Systems with Priority Demand Classes," Operations Research, INFORMS, vol. 51(6), pages 993-1002, December.
    20. Michael Dreyfuss & Yahel Giat, 2018. "Window Fill Rate in a Two-Echelon Exchangeable-Item Repair-System," Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 293-299, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oguzhan Vicil, 2021. "Optimizing stock levels for service-differentiated demand classes with inventory rationing and demand lead times," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 381-424, June.
    2. Dursun, İpek & Akcay, Alp & van Houtum, Geert-Jan, 2024. "How good must failure predictions be to make local spare parts stock superfluous?," International Journal of Production Economics, Elsevier, vol. 267(C).
    3. Yahel Giat, 2024. "Stock Levels and Repair Sourcing in a Periodic Review Exchangeable Item Repair System," Logistics, MDPI, vol. 8(2), pages 1-19, March.
    4. Sun, Mingyao & Ng, Chi To & Wu, Feng & Cheng, T.C.E., 2022. "Optimization of after-sales services with spare parts consumption and repairman travel," International Journal of Production Economics, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Tarkan & Güllü, Refik & Erkip, Nesim, 2009. "Using imperfect advance demand information in ordering and rationing decisions," International Journal of Production Economics, Elsevier, vol. 121(2), pages 665-677, October.
    2. Oguzhan Vicil, 2021. "Optimizing stock levels for service-differentiated demand classes with inventory rationing and demand lead times," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 381-424, June.
    3. Quan-Lin Li & Yi-Meng Li & Jing-Yu Ma & Heng-Li Liu, 2023. "A complete algebraic solution to the optimal dynamic rationing policy in the stock-rationing queue with two demand classes," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-54, April.
    4. Pourakbar, Morteza & Dekker, Rommert, 2012. "Customer differentiated end-of-life inventory problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 44-53.
    5. Du, Bisheng & Larsen, Christian, 2017. "Reservation policies of advance orders in the presence of multiple demand classes," European Journal of Operational Research, Elsevier, vol. 256(2), pages 430-438.
    6. Alfieri, Arianna & Pastore, Erica & Zotteri, Giulio, 2017. "Dynamic inventory rationing: How to allocate stock according to managerial priorities. An empirical study," International Journal of Production Economics, Elsevier, vol. 189(C), pages 14-29.
    7. Weihua Zhou & Chung‐Yee Lee & David Wu, 2011. "Optimal control of a capacitated inventory system with multiple demand classes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 43-58, February.
    8. Mohammad Najjartabar Bisheh & G. Reza Nasiri & Esmaeil Esmaeili & Hamid Davoudpour & Shing I. Chang, 2022. "A new supply chain distribution network design for two classes of customers using transfer recurrent neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2604-2618, October.
    9. Felix Papier & Ulrich W. Thonemann, 2010. "Capacity Rationing in Stochastic Rental Systems with Advance Demand Information," Operations Research, INFORMS, vol. 58(2), pages 274-288, April.
    10. Gabor, A.F. & van Vianen, L.A. & Yang, G. & Axsäter, S., 2016. "Enabling customer satisfaction and stock reduction through service differentiation with response time guarantees," Econometric Institute Research Papers EI2016-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Jean-Philippe Gayon & Saif Benjaafar & Francis de Véricourt, 2009. "Using Imperfect Advance Demand Information in Production-Inventory Systems with Multiple Customer Classes," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 128-143, July.
    12. Richard Pibernik & Prashant Yadav, 2008. "Dynamic capacity reservation and due date quoting in a make‐to‐order system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 593-611, October.
    13. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. ElHafsi, Mohsen & Fang, Jianxin & Hamouda, Essia, 2021. "Optimal production and inventory control of multi-class mixed backorder and lost sales demand class models," European Journal of Operational Research, Elsevier, vol. 291(1), pages 147-161.
    15. Karin T. Möllering & Ulrich W. Thonemann, 2008. "An optimal critical level policy for inventory systems with two demand classes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 632-642, October.
    16. Tong Wang & Beril L. Toktay, 2008. "Inventory Management with Advance Demand Information and Flexible Delivery," Management Science, INFORMS, vol. 54(4), pages 716-732, April.
    17. Samii, Amir-Behzad & Pibernik, Richard & Yadav, Prashant, 2011. "An inventory reservation problem with nesting and fill rate-based performance measures," International Journal of Production Economics, Elsevier, vol. 133(1), pages 393-402, September.
    18. Gabor, Adriana F. & van Vianen, Lars A. & Yang, Guangyuan & Axsäter, Sven, 2018. "A base-stock inventory model with service differentiation and response time guarantees," European Journal of Operational Research, Elsevier, vol. 269(3), pages 900-908.
    19. Hasan Arslan & Stephen C. Graves & Thomas A. Roemer, 2007. "A Single-Product Inventory Model for Multiple Demand Classes," Management Science, INFORMS, vol. 53(9), pages 1486-1500, September.
    20. FadIloglu, Mehmet Murat & Bulut, Önder, 2010. "A dynamic rationing policy for continuous-review inventory systems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 675-685, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:646-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.