IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222018114.html
   My bibliography  Save this article

Simultaneous operating temperature and output power prediction method for photovoltaic modules

Author

Listed:
  • Dong, Xiao-Jian
  • Shen, Jia-Ni
  • Ma, Zi-Feng
  • He, Yi-Jun

Abstract

Accurate cell temperature and output power prediction are vital for the optimal design and operation of photovoltaic (PV) systems. However, capturing the accurate relationships between cell temperature/circuit parameters and weather conditions is still a challenging task. In this study, a universal radial basis function neural network based hybrid modeling approach is proposed to model the cell temperature and circuit parameters. A simultaneous optimization model with l1 norm penalty is established and a separate parameter estimation strategy is proposed to handle the high computational parameter estimation procedure. The effectiveness of the proposed hybrid modeling approach is validated based on four practical experimental datasets of both commercial and laboratory PV plants. It is thus indicated that the proposed modeling approach could provide a promising potential solution framework for the accurate output power prediction under different PV types and relatively wide weather conditions.

Suggested Citation

  • Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2022. "Simultaneous operating temperature and output power prediction method for photovoltaic modules," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018114
    DOI: 10.1016/j.energy.2022.124909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Piliougine, M. & Spagnuolo, G. & Sidrach-de-Cardona, M., 2020. "Series resistance temperature sensitivity in degraded mono–crystalline silicon modules," Renewable Energy, Elsevier, vol. 162(C), pages 677-684.
    3. Ruhang, Xu, 2016. "Characteristics and prospective of China׳s PV development route: Based on data of world PV industry 2000–2010," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1032-1043.
    4. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    5. Carrero, C. & Amador, J. & Arnaltes, S., 2007. "A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, Elsevier, vol. 32(15), pages 2579-2589.
    6. Zhu, Lei & Xu, Yuan & Pan, Yingjie, 2019. "Enabled comparative advantage strategy in China's solar PV development," Energy Policy, Elsevier, vol. 133(C).
    7. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    8. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    9. Wang, Fei & Lu, Xiaoxing & Mei, Shengwei & Su, Ying & Zhen, Zhao & Zou, Zubing & Zhang, Xuemin & Yin, Rui & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant," Energy, Elsevier, vol. 238(PC).
    10. Wang, Qian-Kun & He, Yi-Jun & Shen, Jia-Ni & Ma, Zi-Feng & Zhong, Guo-Bin, 2017. "A unified modeling framework for lithium-ion batteries: An artificial neural network based thermal coupled equivalent circuit model approach," Energy, Elsevier, vol. 138(C), pages 118-132.
    11. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    12. Obiwulu, Anthony Umunnakwe & Erusiafe, Nald & Olopade, Muteeu Abayomi & Nwokolo, Samuel Chukwujindu, 2020. "Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance," Renewable Energy, Elsevier, vol. 154(C), pages 404-431.
    13. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    14. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    15. Mellit, A. & Sağlam, S. & Kalogirou, S.A., 2013. "Artificial neural network-based model for estimating the produced power of a photovoltaic module," Renewable Energy, Elsevier, vol. 60(C), pages 71-78.
    16. Torres-Ramírez, M. & Nofuentes, G. & Silva, J.P. & Silvestre, S. & Muñoz, J.V., 2014. "Study on analytical modelling approaches to the performance of thin film PV modules in sunny inland climates," Energy, Elsevier, vol. 73(C), pages 731-740.
    17. Abbassi, Abdelkader & Abbassi, Rabeh & Heidari, Ali Asghar & Oliva, Diego & Chen, Huiling & Habib, Arslan & Jemli, Mohamed & Wang, Mingjing, 2020. "Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach," Energy, Elsevier, vol. 198(C).
    18. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    19. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    2. Yadav, Amit Kumar & Chandel, S.S., 2017. "Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 955-969.
    3. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    4. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    5. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    6. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    7. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    8. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    9. Huxley, O.T. & Taylor, J. & Everard, A. & Briggs, J. & Tilley, K. & Harwood, J. & Buckley, A., 2022. "The uncertainties involved in measuring national solar photovoltaic electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    11. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    12. Carrero, C. & Ramirez, D. & Rodríguez, J. & Castillo-Sierra, R., 2021. "Sensitivity analysis of loss resistances variations of PV generators applied to the assessment of maximum power point changes due to degradation," Renewable Energy, Elsevier, vol. 173(C), pages 351-361.
    13. Ghani, F. & Rosengarten, G. & Duke, M. & Carson, J.K., 2014. "The numerical calculation of single-diode solar-cell modelling parameters," Renewable Energy, Elsevier, vol. 72(C), pages 105-112.
    14. Gulkowski, Slawomir & Muñoz Diez, José Vicente & Aguilera Tejero, Jorge & Nofuentes, Gustavo, 2019. "Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions," Energy, Elsevier, vol. 172(C), pages 380-390.
    15. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    16. Alessandro Niccolai & Emanuele Ogliari & Alfredo Nespoli & Riccardo Zich & Valentina Vanetti, 2022. "Very Short-Term Forecast: Different Classification Methods of the Whole Sky Camera Images for Sudden PV Power Variations Detection," Energies, MDPI, vol. 15(24), pages 1-16, December.
    17. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Liu, Zhongbing & Wu, Zhenghong & He, Xihua, 2017. "Dynamical simulation of building integrated photovoltaic thermoelectric wall system: Balancing calculation speed and accuracy," Applied Energy, Elsevier, vol. 204(C), pages 887-897.
    19. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    20. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.