IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p771-d1021854.html
   My bibliography  Save this article

Optimal Design of Electric Vehicle Fast-Charging Station’s Structure Using Metaheuristic Algorithms

Author

Listed:
  • Phiraphat Antarasee

    (Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Suttichai Premrudeepreechacharn

    (Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Apirat Siritaratiwat

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Sirote Khunkitti

    (Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand)

Abstract

The fast development of electric vehicles (EVs) has resulted in several topics of research in this area, such as the development of a charging pricing strategy, charging control, location of the charging station, and the structure within the charging station. This paper proposes the optimal design of the structure of an EV fast-charging station (EVFCS) connected with a renewable energy source and battery energy storage systems (BESS) by using metaheuristic algorithms. The optimal design of this structure aims to find the number and power of chargers. Moreover, the renewable energy source and BESS can reduce the impact on the grid, so these energy sources are considered as ones of the optimally-designed structure of EVFCS in this work. Thus, it is necessary to determine the optimal sizing of the renewable energy source, BESS, and the grid power connected to EVFCS. This optimal structure can improve the profitability of the station. To solve the optimization problem, three metaheuristic algorithms, including particle swarm optimization (PSO), Salp swarm algorithm (SSA), and arithmetic optimization algorithm (AOA), are adopted. These algorithms aim to find the optimal structure which maximizes the profit of the EVFCS determined by its net present value (NPV), and the results obtained from these algorithms were compared. The results demonstrate that all considered algorithms could find the feasible solutions of the optimal design of the EVFCS structure where PSO provided the best NPV, followed by AOA and SSA.

Suggested Citation

  • Phiraphat Antarasee & Suttichai Premrudeepreechacharn & Apirat Siritaratiwat & Sirote Khunkitti, 2022. "Optimal Design of Electric Vehicle Fast-Charging Station’s Structure Using Metaheuristic Algorithms," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:771-:d:1021854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Supanat Chamchuen & Apirat Siritaratiwat & Pradit Fuangfoo & Puripong Suthisopapan & Pirat Khunkitti, 2021. "High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm," Energies, MDPI, vol. 14(5), pages 1-18, February.
    2. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    3. Qiongjie Dai & Jicheng Liu & Qiushuang Wei, 2019. "Optimal Photovoltaic/Battery Energy Storage/Electric Vehicle Charging Station Design Based on Multi-Agent Particle Swarm Optimization Algorithm," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    4. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    5. Nathphol Khaboot & Chitchai Srithapon & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Increasing Benefits in High PV Penetration Distribution System by Using Battery Enegy Storage and Capacitor Placement Based on Salp Swarm Algorithm," Energies, MDPI, vol. 12(24), pages 1-20, December.
    6. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    7. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    8. Dominic A. Savio & Vimala A. Juliet & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Frede Blaabjerg, 2019. "Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach," Energies, MDPI, vol. 12(1), pages 1-28, January.
    9. Happy Aprillia & Hong-Tzer Yang & Chao-Ming Huang, 2020. "Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm," Energies, MDPI, vol. 13(8), pages 1-20, April.
    10. Hafez, Omar & Bhattacharya, Kankar, 2017. "Optimal design of electric vehicle charging stations considering various energy resources," Renewable Energy, Elsevier, vol. 107(C), pages 576-589.
    11. Rong-Ceng Leou & Jeng-Jiun Hung, 2017. "Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations," Energies, MDPI, vol. 10(4), pages 1-17, April.
    12. Fathabadi, Hassan, 2020. "Novel stand-alone, completely autonomous and renewable energy based charging station for charging plug-in hybrid electric vehicles (PHEVs)," Applied Energy, Elsevier, vol. 260(C).
    13. Vermaak, Herman Jacobus & Kusakana, Kanzumba, 2014. "Design of a photovoltaic–wind charging station for small electric Tuk–tuk in D.R.Congo," Renewable Energy, Elsevier, vol. 67(C), pages 40-45.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
    3. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Calviño, Aida, 2019. "Fast charging stations placement methodology for electric taxis in urban zones," Energy, Elsevier, vol. 188(C).
    4. Mohd Bilal & Ibrahim Alsaidan & Muhannad Alaraj & Fahad M. Almasoudi & Mohammad Rizwan, 2022. "Techno-Economic and Environmental Analysis of Grid-Connected Electric Vehicle Charging Station Using AI-Based Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-40, March.
    5. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    6. Jean-Michel Clairand & Carlos Álvarez-Bel & Javier Rodríguez-García & Guillermo Escrivá-Escrivá, 2020. "Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    7. Gheorghe Badea & Raluca-Andreea Felseghi & Mihai Varlam & Constantin Filote & Mihai Culcer & Mariana Iliescu & Maria Simona Răboacă, 2018. "Design and Simulation of Romanian Solar Energy Charging Station for Electric Vehicles," Energies, MDPI, vol. 12(1), pages 1-16, December.
    8. Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
    9. Eltamaly, Ali M., 2021. "A novel musical chairs algorithm applied for MPPT of PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Bastida-Molina, Paula & Hurtado-Pérez, Elías & Moros Gómez, María Cristina & Vargas-Salgado, Carlos, 2021. "Multicriteria power generation planning and experimental verification of hybrid renewable energy systems for fast electric vehicle charging stations," Renewable Energy, Elsevier, vol. 179(C), pages 737-755.
    11. Kameswara Satya Prakash Oruganti & Chockalingam Aravind Vaithilingam & Gowthamraj Rajendran & Ramasamy A, 2019. "Design and Sizing of Mobile Solar Photovoltaic Power Plant to Support Rapid Charging for Electric Vehicles," Energies, MDPI, vol. 12(18), pages 1-22, September.
    12. Adel O. Baatiah & Ali M. Eltamaly & Majed A. Alotaibi, 2023. "Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction," Energies, MDPI, vol. 16(18), pages 1-15, September.
    13. Ali M. Eltamaly, 2021. "An Improved Cuckoo Search Algorithm for Maximum Power Point Tracking of Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-26, February.
    14. Syed Muhammad Arif & Tek Tjing Lie & Boon Chong Seet & Syed Muhammad Ahsan & Hassan Abbas Khan, 2020. "Plug-In Electric Bus Depot Charging with PV and ESS and Their Impact on LV Feeder," Energies, MDPI, vol. 13(9), pages 1-16, April.
    15. Al Wahedi, Abdulla & Bicer, Yusuf, 2022. "Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar," Energy, Elsevier, vol. 243(C).
    16. Ali M. Eltamaly & Zeyad A. Almutairi & Mohamed A. Abdelhamid, 2023. "Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems," Energies, MDPI, vol. 16(13), pages 1-22, July.
    17. Ahmed Abdalrahman & Weihua Zhuang, 2017. "A Survey on PEV Charging Infrastructure: Impact Assessment and Planning," Energies, MDPI, vol. 10(10), pages 1-25, October.
    18. Simon Steinschaden & José Baptista, 2020. "Development of an Efficient Tool for Solar Charging Station Management for Electric Vehicles," Energies, MDPI, vol. 13(11), pages 1-21, June.
    19. Abdulaziz Almutairi & Ahmed G. Abo-Khalil & Khairy Sayed & Naif Albagami, 2020. "MPPT for a PV Grid-Connected System to Improve Efficiency under Partial Shading Conditions," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    20. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:771-:d:1021854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.