IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics0360544221032576.html
   My bibliography  Save this article

Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar

Author

Listed:
  • Al Wahedi, Abdulla
  • Bicer, Yusuf

Abstract

One of the main challenges of e-mobility roll-out is securing the required charging demand without stressing the existing power grid. The electrical source must be non-conventional to achieve the ultimate eco-friendly goal. This study conducts a techno-economic assessment for a novel stand-alone renewables-based charging station to determine the optimal configuration to generate the required daily charging demand. The optimization is accomplished through modeling and simulating of the proposed design using HOMER software in four cities of Qatar to investigate various geographical locations and metrological conditions. The optimal solution is compared with the grid extension option in each location using a comprehensive economic criterion. The results showed that 250 kW wind turbine with 60 m hub height, 450 kWp CPV/T system, 500 kW electrolyzer, 100 kW H2 and NH3 FCs, 15 kW bio-generator, 200 kg chemical storage tank, 304–324 kW Li-ion battery storage and 299–335 kW converter combination is the optimal stand-alone configuration for the selected sites. The optimum cases' net present cost ranges between $2.53 M to $2.92 M, and the cost of electricity ranges between $0.285 to $0.329 per kWh. The proposed optimization methodology is suitable for applications in any location, considering the metrological conditions of the site under study.

Suggested Citation

  • Al Wahedi, Abdulla & Bicer, Yusuf, 2022. "Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032576
    DOI: 10.1016/j.energy.2021.123008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.123008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jian & Zhong, Caifu, 2019. "An economic evaluation of the coordination between electric vehicle storage and distributed renewable energy," Energy, Elsevier, vol. 186(C).
    2. Ramos, J.S. & Ramos, H.M., 2009. "Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration," Energy Policy, Elsevier, vol. 37(2), pages 633-643, February.
    3. Kenfack, Joseph & Neirac, François Pascal & Tatietse, Thomas Tamo & Mayer, Didier & Fogue, Médard & Lejeune, André, 2009. "Microhydro-PV-hybrid system: Sizing a small hydro-PV-hybrid system for rural electrification in developing countries," Renewable Energy, Elsevier, vol. 34(10), pages 2259-2263.
    4. Marafia, A-Hamid & Ashour, Hamdy A., 2003. "Economics of off-shore/on-shore wind energy systems in Qatar," Renewable Energy, Elsevier, vol. 28(12), pages 1953-1963.
    5. Nfah, E.M. & Ngundam, J.M., 2009. "Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon," Renewable Energy, Elsevier, vol. 34(6), pages 1445-1450.
    6. Nfah, E.M. & Ngundam, J.M. & Vandenbergh, M. & Schmid, J., 2008. "Simulation of off-grid generation options for remote villages in Cameroon," Renewable Energy, Elsevier, vol. 33(5), pages 1064-1072.
    7. Asrari, Arash & Ghasemi, Abolfazl & Javidi, Mohammad Hossein, 2012. "Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3123-3130.
    8. Amutha, W. Margaret & Rajini, V., 2016. "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 236-246.
    9. Kusakana, Kanzumba, 2014. "Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa," Energy, Elsevier, vol. 68(C), pages 947-957.
    10. Hafez, Omar & Bhattacharya, Kankar, 2017. "Optimal design of electric vehicle charging stations considering various energy resources," Renewable Energy, Elsevier, vol. 107(C), pages 576-589.
    11. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    12. Rohani, Golbarg & Nour, Mutasim, 2014. "Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates," Energy, Elsevier, vol. 64(C), pages 828-841.
    13. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    14. Ghenai, Chaouki & Bettayeb, Maamar, 2019. "Modelling and performance analysis of a stand-alone hybrid solar PV/Fuel Cell/Diesel Generator power system for university building," Energy, Elsevier, vol. 171(C), pages 180-189.
    15. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    16. Goli, P. & Shireen, W., 2014. "PV powered smart charging station for PHEVs," Renewable Energy, Elsevier, vol. 66(C), pages 280-287.
    17. Abdulla Al Wahedi & Yusuf Bicer, 2020. "A Case Study in Qatar for Optimal Energy Management of an Autonomous Electric Vehicle Fast Charging Station with Multiple Renewable Energy and Storage Systems," Energies, MDPI, vol. 13(19), pages 1-26, September.
    18. Vermaak, Herman Jacobus & Kusakana, Kanzumba, 2014. "Design of a photovoltaic–wind charging station for small electric Tuk–tuk in D.R.Congo," Renewable Energy, Elsevier, vol. 67(C), pages 40-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nahar F. Alshammari & Mohamed Mahmoud Samy & Shimaa Barakat, 2023. "Comprehensive Analysis of Multi-Objective Optimization Algorithms for Sustainable Hybrid Electric Vehicle Charging Systems," Mathematics, MDPI, vol. 11(7), pages 1-31, April.
    2. Clairand, Jean-Michel & González-Rodríguez, Mario & Kumar, Rajesh & Vyas, Shashank & Escrivá-Escrivá, Guillermo, 2022. "Optimal siting and sizing of electric taxi charging stations considering transportation and power system requirements," Energy, Elsevier, vol. 256(C).
    3. Jamiu O. Oladigbolu & Asad Mujeeb & Amir A. Imam & Ali Muhammad Rushdi, 2022. "Design, Technical and Economic Optimization of Renewable Energy-Based Electric Vehicle Charging Stations in Africa: The Case of Nigeria," Energies, MDPI, vol. 16(1), pages 1-32, December.
    4. Jieun Ihm & Bilal Amghar & Sejin Chun & Herie Park, 2023. "Optimum Design of an Electric Vehicle Charging Station Using a Renewable Power Generation System in South Korea," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    5. Sami M. Alshareef & Ahmed Fathy, 2023. "Efficient Red Kite Optimization Algorithm for Integrating the Renewable Sources and Electric Vehicle Fast Charging Stations in Radial Distribution Networks," Mathematics, MDPI, vol. 11(15), pages 1-30, July.
    6. Samrat Chakraborty & Debottam Mukherjee & Pabitra Kumar Guchhait & Somudeep Bhattacharjee & Almoataz Youssef Abdelaziz & Adel El-Shahat, 2023. "Optimum Design of a Renewable-Based Integrated Energy System in Autonomous Mode for a Remote Hilly Location in Northeastern India," Energies, MDPI, vol. 16(4), pages 1-30, February.
    7. Demirci, Alpaslan & Öztürk, Zafer & Tercan, Said Mirza, 2023. "Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    2. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.
    3. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    4. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    6. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    7. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    8. Kenfack, Joseph & Nzotcha, Urbain & Voufo, Joseph & Ngohe-Ekam, Paul Salomon & Nsangou, Jean Calvin & Bignom, Blaise, 2021. "Cameroon's hydropower potential and development under the vision of Central Africa power pool (CAPP): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Nasser Yimen & Oumarou Hamandjoda & Lucien Meva’a & Benoit Ndzana & Jean Nganhou, 2018. "Analyzing of a Photovoltaic/Wind/Biogas/Pumped-Hydro Off-Grid Hybrid System for Rural Electrification in Sub-Saharan Africa—Case Study of Djoundé in Northern Cameroon," Energies, MDPI, vol. 11(10), pages 1-30, October.
    10. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    11. Gheorghe Badea & Raluca-Andreea Felseghi & Mihai Varlam & Constantin Filote & Mihai Culcer & Mariana Iliescu & Maria Simona Răboacă, 2018. "Design and Simulation of Romanian Solar Energy Charging Station for Electric Vehicles," Energies, MDPI, vol. 12(1), pages 1-16, December.
    12. Hartvigsson, Elias & Stadler, Michael & Cardoso, Gonçalo, 2018. "Rural electrification and capacity expansion with an integrated modeling approach," Renewable Energy, Elsevier, vol. 115(C), pages 509-520.
    13. Khan, Faizan A. & Pal, Nitai & Saeed, Syed H., 2021. "Optimization and sizing of SPV/Wind hybrid renewable energy system: A techno-economic and social perspective," Energy, Elsevier, vol. 233(C).
    14. Rezk, Hegazy & Dousoky, Gamal M., 2016. "Technical and economic analysis of different configurations of stand-alone hybrid renewable power systems – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 941-953.
    15. Jung, Jaesung & Villaran, Michael, 2017. "Optimal planning and design of hybrid renewable energy systems for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 180-191.
    16. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    17. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    18. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    19. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 388-405.
    20. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.