IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222022848.html
   My bibliography  Save this article

Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones

Author

Listed:
  • Demirci, Alpaslan
  • Öztürk, Zafer
  • Tercan, Said Mirza

Abstract

The growing population and technological developments have led to irregular houses and especially industrial facilities in developing cities. Furthermore, due to social and economic factors and the increasing massive migrations, undeveloped rural projects make irregular settlements worse. Thus, the expensiveness caused by the deterioration of the supply-demand balance makes establishment or production capacity increase of industrial facilities difficult. In this study, supplying the industrial urban facilities' demand with only grid or on-grid/off-grid HPS scenarios were investigated considering expanding and relocation outside the city. Twelve industrial cities in Turkey with various climates have been evaluated using Homer ® Pro, considering the effects of RES potential on the techno-economic parameters. The results showed that the RES potentials changed break-even distance for grid extension between 0 and 25 km. Furthermore, it has been determined that the change in the discount rate and the grid extension costs, which vary depending on the regional geographical conditions, seriously manipulate break-even distance. Particularly, it can be extended up to 55 km depending on RES potentials and grid extension capital cost. In contrast, high RES potential make unnecessary grid extension, especially where the discount rate was less than 4%. Finally, sensitivity analyses are also presented in detail.

Suggested Citation

  • Demirci, Alpaslan & Öztürk, Zafer & Tercan, Said Mirza, 2023. "Decision-making between hybrid renewable energy configurations and grid extension in rural areas for different climate zones," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022848
    DOI: 10.1016/j.energy.2022.125402
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222022848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Barun K. & Hasan, Mahmudul, 2021. "Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat," Energy, Elsevier, vol. 214(C).
    2. Odou, Oluwarotimi Delano Thierry & Bhandari, Ramchandra & Adamou, Rabani, 2020. "Hybrid off-grid renewable power system for sustainable rural electrification in Benin," Renewable Energy, Elsevier, vol. 145(C), pages 1266-1279.
    3. Elizabeth Baldwin & Jennifer N. Brass & Sanya Carley & Lauren M. MacLean, 2015. "Electrification and rural development: issues of scale in distributed generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 196-211, March.
    4. Sen Guo & Huiru Zhao & Haoran Zhao, 2017. "The Most Economical Mode of Power Supply for Remote and Less Developed Areas in China: Power Grid Extension or Micro-Grid?," Sustainability, MDPI, vol. 9(6), pages 1-18, May.
    5. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    6. Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
    7. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    8. Peters, Jörg & Sievert, Maximiliane & Toman, Michael A., 2019. "Rural electrification through mini-grids: Challenges ahead," Energy Policy, Elsevier, vol. 132(C), pages 27-31.
    9. Vittorio Sessa & Ramchandra Bhandari & Abdramane Ba, 2021. "Rural Electrification Pathways: An Implementation of LEAP and GIS Tools in Mali," Energies, MDPI, vol. 14(11), pages 1-19, June.
    10. Jahangir, Mohammad Hossein & Fakouriyan, Samaneh & Vaziri Rad, Mohammad Amin & Dehghan, Hassan, 2020. "Feasibility study of on/off grid large-scale PV/WT/WEC hybrid energy system in coastal cities: A case-based research," Renewable Energy, Elsevier, vol. 162(C), pages 2075-2095.
    11. Hanieh Seyedhashemi & Benoît Hingray & Christophe Lavaysse & Théo Chamarande, 2021. "The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa," Energies, MDPI, vol. 14(11), pages 1-18, May.
    12. Fernando Antonanzas-Torres & Javier Antonanzas & Julio Blanco-Fernandez, 2021. "State-of-the-Art of Mini Grids for Rural Electrification in West Africa," Energies, MDPI, vol. 14(4), pages 1-21, February.
    13. Al Wahedi, Abdulla & Bicer, Yusuf, 2022. "Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar," Energy, Elsevier, vol. 243(C).
    14. Maaouane, Mohamed & Zouggar, Smail & Krajačić, Goran & Zahboune, Hassan, 2021. "Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods," Energy, Elsevier, vol. 225(C).
    15. Susann Stritzke & Prem Jain, 2021. "The Sustainability of Decentralised Renewable Energy Projects in Developing Countries: Learning Lessons from Zambia," Energies, MDPI, vol. 14(13), pages 1-44, June.
    16. Khan, Hassan Abbas & Ahmad, Husnain Fateh & Nasir, Mashood & Nadeem, Muhammad Fatiq & Zaffar, Nauman Ahmed, 2018. "Decentralised electric power delivery for rural electrification in Pakistan," Energy Policy, Elsevier, vol. 120(C), pages 312-323.
    17. Juanpera, M. & Blechinger, P. & Ferrer-Martí, L. & Hoffmann, M.M. & Pastor, R., 2020. "Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Asrari, Arash & Ghasemi, Abolfazl & Javidi, Mohammad Hossein, 2012. "Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3123-3130.
    19. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2010. "Prospect of wind–PV-battery hybrid power system as an alternative to grid extension in Bangladesh," Energy, Elsevier, vol. 35(7), pages 3040-3047.
    20. Chowdhury, Tamal & Chowdhury, Hemal & Miskat, Monirul Islam & Chowdhury, Piyal & Sait, Sadiq M. & Thirugnanasambandam, M. & Saidur, R., 2020. "Developing and evaluating a stand-alone hybrid energy system for Rohingya refugee community in Bangladesh," Energy, Elsevier, vol. 191(C).
    21. Duran, Asligul Serasu & Sahinyazan, Feyza G., 2021. "An analysis of renewable mini-grid projects for rural electrification," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    22. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    23. Yang, Xiyun & Liu, Siqu & Zhang, Le & Su, Jianzheng & Ye, Tianze, 2020. "Design and analysis of a renewable energy power system for shale oil exploitation using hierarchical optimization," Energy, Elsevier, vol. 206(C).
    24. George Kyriakarakos & Athanasios T. Balafoutis & Dionysis Bochtis, 2020. "Proposing a Paradigm Shift in Rural Electrification Investments in Sub-Saharan Africa through Agriculture," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    25. Olaf Kühne & Florian Weber, 2018. "Conflicts and negotiation processes in the course of power grid extension in Germany," Landscape Research, Taylor & Francis Journals, vol. 43(4), pages 529-541, May.
    26. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    27. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    28. Diouf, Boucar & Miezan, Ekra, 2021. "The limits of the concession-led model in rural electrification policy: The case study of Senegal," Renewable Energy, Elsevier, vol. 177(C), pages 626-635.
    29. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    30. Shahzad, M. Kashif & Zahid, Adeem & ur Rashid, Tanzeel & Rehan, Mirza Abdullah & Ali, Muzaffar & Ahmad, Mueen, 2017. "Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software," Renewable Energy, Elsevier, vol. 106(C), pages 264-273.
    31. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    32. Vermaak, Herman Jacobus & Kusakana, Kanzumba, 2014. "Design of a photovoltaic–wind charging station for small electric Tuk–tuk in D.R.Congo," Renewable Energy, Elsevier, vol. 67(C), pages 40-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenshuai Bai & Dian Wang & Zhongquan Miao & Xiaorong Sun & Jiabin Yu & Jiping Xu & Yuqing Pan, 2023. "The Design and Application of Microgrid Supervisory System for Commercial Buildings Considering Dynamic Converter Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamjid Shabestari, Sara & Kasaeian, Alibakhsh & Vaziri Rad, Mohammad Amin & Forootan Fard, Habib & Yan, Wei-Mon & Pourfayaz, Fathollah, 2022. "Techno-financial evaluation of a hybrid renewable solution for supplying the predicted power outages by machine learning methods in rural areas," Renewable Energy, Elsevier, vol. 194(C), pages 1303-1325.
    2. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    3. Kumar, Pankaj & Pal, Nitai & Sharma, Himanshu, 2022. "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India," Energy, Elsevier, vol. 247(C).
    4. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.
    5. Konneh, Keifa Vamba & Masrur, Hasan & Konneh, David A. & Senjyu, Tomonobu, 2022. "Independent or complementary power system configuration: A decision making approach for sustainable electrification of an urban environment in Sierra Leone," Energy, Elsevier, vol. 239(PD).
    6. Juanpera, M. & Domenech, B. & Ferrer-Martí, L. & Garzón, A. & Pastor, R., 2021. "Renewable-based electrification for remote locations. Does short-term success endure over time? A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    8. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    9. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    10. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    11. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    12. Bhattacharyya, S.C. & Palit, D., 2021. "A critical review of literature on the nexus between central grid and off-grid solutions for expanding access to electricity in Sub-Saharan Africa and South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Figaj, Rafał, 2021. "Performance assessment of a renewable micro-scale trigeneration system based on biomass steam cycle, wind turbine, photovoltaic field," Renewable Energy, Elsevier, vol. 177(C), pages 193-208.
    14. Mohammadi, Amir & Babaei, Reza & Jianu, Ofelia A., 2023. "Feasibility analysis of sustainable hydrogen production for heavy-duty applications: Case study of highway 401," Energy, Elsevier, vol. 282(C).
    15. Onu, Uchenna Godswill & Silva, Giuseppe Scabello & Zambroni de Souza, Antonio Carlos & Bonatto, Benedito Donizeti & Ferreira da Costa, Vinicius Braga, 2022. "Integrated design of photovoltaic power generation plant with pumped hydro storage system and irrigation facility at the Uhuelem-Amoncha African community," Renewable Energy, Elsevier, vol. 198(C), pages 1021-1031.
    16. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    17. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Hussain, Moaid K. & Adzman, Mohd Rafi & Ghazali, Nur Hafizah & Ramli, Makbul A.M. & Khalil Zidane, Tekai Eddine, 2022. "A new optimization strategy for wind/diesel/battery hybrid energy system," Energy, Elsevier, vol. 239(PE).
    18. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Das, Barun K. & Hasan, Mahmudul & Das, Pronob, 2021. "Impact of storage technologies, temporal resolution, and PV tracking on stand-alone hybrid renewable energy for an Australian remote area application," Renewable Energy, Elsevier, vol. 173(C), pages 362-380.
    20. Konneh, Keifa Vamba & Adewuyi, Oludamilare Bode & Gamil, Mahmoud M. & Fazli, Agha Mohammad & Senjyu, Tomonobu, 2023. "A scenario-based multi-attribute decision making approach for optimal design of a hybrid off-grid system," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.