IDEAS home Printed from
   My bibliography  Save this article

Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration


  • Ramos, J.S.
  • Ramos, H.M.


Eighteen years ago, in Portugal, the expenses in a water supply system associated with energy consumption were quite low. However, with the successive crises of energy fuel and the increase of the energy tariff as well as the water demand, the energy consumption is becoming a larger and a more important part of the total budget of water supply pumping systems. Also, new governmental policies, essentially in developed countries, are trying to implement renewable energies. For these reasons, a case-study in Portugal of a water pumping system was analysed to operate connected to solar and wind energy sources. A stand-alone and a grid-connected systems were tested. The stand alone was compared with the cost of extending the national electric grid. In the grid-connected system two solutions were analysed, one with a water turbine and another without. To be able to implement a water turbine, a larger water pump was needed to pump the necessary water as for consumption as for energy production. For the case analysed the system without a water turbine proved to be more cost-effective because the energy tariff is not yet so competitive as well as the cost of water turbines.

Suggested Citation

  • Ramos, J.S. & Ramos, H.M., 2009. "Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration," Energy Policy, Elsevier, vol. 37(2), pages 633-643, February.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:633-643

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Rehman, Shafiqur & Bader, Maher A. & Al-Moallem, Said A., 2007. "Cost of solar energy generated using PV panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1843-1857, October.
    2. Vieira, F. & Ramos, H.M., 2008. "Hybrid solution and pump-storage optimization in water supply system efficiency: A case study," Energy Policy, Elsevier, vol. 36(11), pages 4142-4148, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gonçalves, F.V. & Costa, L.H. & Ramos, H.M., 2011. "Best economical hybrid energy solution: Model development and case study of a WDS in Portugal," Energy Policy, Elsevier, vol. 39(6), pages 3361-3369, June.
    2. repec:eee:rensus:v:79:y:2017:i:c:p:440-458 is not listed on IDEAS
    3. repec:gam:jsusta:v:8:y:2016:i:5:p:455:d:69643 is not listed on IDEAS
    4. repec:eee:rensus:v:87:y:2018:i:c:p:61-76 is not listed on IDEAS
    5. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    6. Huang, Qunwu & Shi, Yeqiang & Wang, Yiping & Lu, Linping & Cui, Yong, 2015. "Multi-turbine wind-solar hybrid system," Renewable Energy, Elsevier, vol. 76(C), pages 401-407.
    7. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    8. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    9. Gerbelová, Hana & Amorim, Filipa & Pina, André & Melo, Mário & Ioakimidis, Christos & Ferrão, Paulo, 2014. "Potential of CO2 (carbon dioxide) taxes as a policy measure towards low-carbon Portuguese electricity sector by 2050," Energy, Elsevier, vol. 69(C), pages 113-119.
    10. Segurado, R. & Costa, M. & Duić, N. & Carvalho, M.G., 2015. "Integrated analysis of energy and water supply in islands. Case study of S. Vicente, Cape Verde," Energy, Elsevier, vol. 92(P3), pages 639-648.
    11. Soshinskaya, Mariya & Crijns-Graus, Wina H.J. & van der Meer, Jos & Guerrero, Josep M., 2014. "Application of a microgrid with renewables for a water treatment plant," Applied Energy, Elsevier, vol. 134(C), pages 20-34.
    12. Luis Henrique Magalhães Costa & Bruno Prata & Helena M. Ramos & Marco Aurélio Holanda Castro, 2016. "A Branch-and-Bound Algorithm for Optimal Pump Scheduling in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1037-1052, February.
    13. Kucukali, Serhat, 2010. "Hydropower potential of municipal water supply dams in Turkey: A case study in Ulutan Dam," Energy Policy, Elsevier, vol. 38(11), pages 6534-6539, November.
    14. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    15. Guido C. Guerrero-Liquet & Juan Miguel Sánchez-Lozano & María Socorro García-Cascales & María Teresa Lamata & José Luis Verdegay, 2016. "Decision-Making for Risk Management in Sustainable Renewable Energy Facilities: A Case Study in the Dominican Republic," Sustainability, MDPI, Open Access Journal, vol. 8(5), pages 1-21, May.
    16. repec:eee:energy:v:142:y:2018:i:c:p:1023-1039 is not listed on IDEAS
    17. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    18. Gallagher, J. & Harris, I.M. & Packwood, A.J. & McNabola, A. & Williams, A.P., 2015. "A strategic assessment of micro-hydropower in the UK and Irish water industry: Identifying technical and economic constraints," Renewable Energy, Elsevier, vol. 81(C), pages 808-815.
    19. Ramos, Helena M. & Teyssier, Charlotte & Samora, Irene & Schleiss, Anton J., 2013. "Energy recovery in SUDS towards smart water grids: A case study," Energy Policy, Elsevier, vol. 62(C), pages 463-472.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:633-643. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.