IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i15p3305-d1204089.html
   My bibliography  Save this article

Efficient Red Kite Optimization Algorithm for Integrating the Renewable Sources and Electric Vehicle Fast Charging Stations in Radial Distribution Networks

Author

Listed:
  • Sami M. Alshareef

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Ahmed Fathy

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
    Department of Electric Power and Machines, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

Abstract

The high penetration of renewable energy resources’ (RESs) and electric vehicles’ (EVs) demands to power systems can stress the network reliability due to their stochastic natures. This can reduce the power quality in addition to increasing the network power losses and voltage deviations. This problem can be solved by allocating RESs and EV fast charging stations (FCSs) in suitable locations on the grid. So, this paper proposes a new approach using the red kite optimization algorithm (ROA) for integrating RESs and FCSs to the distribution network through identifying their best sizes and locations. The fitness functions considered in this work are: reducing the network loss and minimizing the voltage violation for 24 h. Moreover, a new version of the multi-objective red kite optimization algorithm (MOROA) is proposed to achieve both considered fitness functions. The study is performed on two standard distribution networks of IEEE-33 bus and IEEE-69 bus. The proposed ROA is compared to dung beetle optimizer (DBO), African vultures optimization algorithm (AVOA), bald eagle search (BES) algorithm, bonobo optimizer (BO), grey wolf optimizer (GWO), multi-objective multi-verse optimizer (MOMVO), multi-objective grey wolf optimizer (MOGWO), and multi-objective artificial hummingbird algorithm (MOAHA). For the IEEE-33 bus network, the proposed ROA succeeded in reducing the power loss and voltage deviation by 58.24% and 90.47%, respectively, while in the IEEE-69 bus it minimized the power loss and voltage deviation by 68.39% and 93.22%, respectively. The fetched results proved the competence and robustness of the proposed ROA in solving the problem of integrating RESs and FCSs to the electrical networks.

Suggested Citation

  • Sami M. Alshareef & Ahmed Fathy, 2023. "Efficient Red Kite Optimization Algorithm for Integrating the Renewable Sources and Electric Vehicle Fast Charging Stations in Radial Distribution Networks," Mathematics, MDPI, vol. 11(15), pages 1-30, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3305-:d:1204089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/15/3305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/15/3305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yellapragada Venkata Pavan Kumar & Sivakavi Naga Venkata Bramareswara Rao & Kottala Padma & Challa Pradeep Reddy & Darsy John Pradeep & Aymen Flah & Habib Kraiem & Michał Jasiński & Srete Nikolovski, 2022. "Fuzzy Hysteresis Current Controller for Power Quality Enhancement in Renewable Energy Integrated Clusters," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    3. Al Wahedi, Abdulla & Bicer, Yusuf, 2022. "Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar," Energy, Elsevier, vol. 243(C).
    4. Yi, Tao & Cheng, Xiaobin & Peng, Peng, 2022. "Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: A framework based on MCS and DBPSO," Energy, Elsevier, vol. 239(PC).
    5. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    6. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    7. Erdogan, Nuh & Pamucar, Dragan & Kucuksari, Sadik & Deveci, Muhammet, 2021. "An integrated multi-objective optimization and multi-criteria decision-making model for optimal planning of workplace charging stations," Applied Energy, Elsevier, vol. 304(C).
    8. Jia Liu & Jin Huang & Jinzhi Hu, 2022. "Multi-objective optimisation method of electric vehicle charging station based on non-dominated sorting genetic algorithm," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 44(5/6), pages 413-426.
    9. Kong, Weiwei & Luo, Yugong & Feng, Guixuan & Li, Keqiang & Peng, Huei, 2019. "Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid," Energy, Elsevier, vol. 186(C).
    10. Deb, Sanchari & Gao, Xiao-Zhi & Tammi, Kari & Kalita, Karuna & Mahanta, Pinakeswar, 2021. "A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaoyidi Wang & Niansheng Chen & Guangyu Fan & Dingyu Yang & Lei Rao & Songlin Cheng & Xiaoyong Song, 2023. "DLPformer: A Hybrid Mathematical Model for State of Charge Prediction in Electric Vehicles Using Machine Learning Approaches," Mathematics, MDPI, vol. 11(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    2. Hamza El Hafdaoui & Hamza El Alaoui & Salma Mahidat & Zakaria El Harmouzi & Ahmed Khallaayoun, 2023. "Impact of Hot Arid Climate on Optimal Placement of Electric Vehicle Charging Stations," Energies, MDPI, vol. 16(2), pages 1-19, January.
    3. Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
    4. Deveci, Muhammet & Erdogan, Nuh & Pamucar, Dragan & Kucuksari, Sadik & Cali, Umit, 2023. "A rough Dombi Bonferroni based approach for public charging station type selection," Applied Energy, Elsevier, vol. 345(C).
    5. Clairand, Jean-Michel & González-Rodríguez, Mario & Kumar, Rajesh & Vyas, Shashank & Escrivá-Escrivá, Guillermo, 2022. "Optimal siting and sizing of electric taxi charging stations considering transportation and power system requirements," Energy, Elsevier, vol. 256(C).
    6. Amaro García-Suárez & José-Luis Guisado-Lizar & Fernando Diaz-del-Rio & Francisco Jiménez-Morales, 2021. "A Cellular Automata Agent-Based Hybrid Simulation Tool to Analyze the Deployment of Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    7. Wang, Ning & Tian, Hangqi & Wu, Huahua & Liu, Qiaoqian & Luan, Jie & Li, Yuan, 2023. "Cost-oriented optimization of the location and capacity of charging stations for the electric Robotaxi fleet," Energy, Elsevier, vol. 263(PC).
    8. Loni, Abdolah & Asadi, Somayeh, 2023. "Data-driven equitable placement for electric vehicle charging stations: Case study San Francisco," Energy, Elsevier, vol. 282(C).
    9. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    10. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
    11. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).
    12. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    13. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    14. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    15. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    16. Wang, Yajun & Wang, Jidong & Cao, Man & Kong, Xiangyu & Abderrahim, Bouchedjira & Yuan, Long & Vartosh, Aris, 2023. "Dynamic emission dispatch considering the probabilistic model with multiple smart energy system players based on a developed fuzzy theory-based harmony search algorithm," Energy, Elsevier, vol. 269(C).
    17. Ruifeng Shi & Jiahua Liu & Zhenhong Liao & Li Niu & Eke Ibrahim & Fang Fu, 2019. "An Electric Taxi Charging Station Planning Scheme Based on an Improved Destination Choice Method," Energies, MDPI, vol. 12(19), pages 1-21, October.
    18. Gogulamudi Pradeep Reddy & Yellapragada Venkata Pavan Kumar & Maddikera Kalyan Chakravarthi & Aymen Flah, 2022. "Refined Network Topology for Improved Reliability and Enhanced Dijkstra Algorithm for Optimal Path Selection during Link Failures in Cluster Microgrids," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    19. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    20. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3305-:d:1204089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.