IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6155-d1438045.html
   My bibliography  Save this article

Joint Optimal Design of Electric Bus Service and Charging Facilities

Author

Listed:
  • Yuan Liu

    (College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China)

  • Yamin Ding

    (Shenzhen SEZ Construction Group Co., Ltd., Shenzhen 518034, China)

  • Pei Jiang

    (Shenzhen General Integrated Transportation and Municipal Engineering Design & Research Institute Co., Ltd., Shenzhen 518033, China)

  • Xugang Jin

    (Chongqing Design Group Co., Ltd., Chongqing 400020, China)

  • Xinlin Wu

    (Chongqing Engineering Management Co., Ltd., Chongqing 408000, China)

  • Zhanji Zheng

    (College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract

With the development of new energy technologies, fuel buses with internal combustion engines are gradually being replaced by electric buses. In order to save on system costs, an optimization model is proposed to jointly design the bus service and charging facilities. Considering the complexity of the original problem, the problem is decomposed into two subproblems, i.e., bus service design and charging facilities design. The bus service design is solved by a genetic algorithm with an embedded enumeration method. The non-linear charging facilities design problem is firstly converted to a linear problem and then solved by existing solving software. Sensitivity analysis of parameters such as passenger flow demand, charging power, and bus stopping time is also conducted to reveal their impact on the optimization of electric bus lines. The results indicate that, compared to the commonly used depot charging strategy, the proposed method reduces the operating cost per unit hour from RMB 16,378.30 to RMB 8677.99, a 47% reduction, and decreases the system cost from RMB 36,386.30 to RMB 29,637.99, an 18.5% reduction. This study addresses the charging and operation problem of electric bus lines. By considering charging vehicles while in operation, a joint optimization model for the operation of electric bus lines and the layout of charging facilities is established. An algorithm based on the combination of a genetic algorithm and enumeration method is designed, combined with a linear programming solver to solve the problem.

Suggested Citation

  • Yuan Liu & Yamin Ding & Pei Jiang & Xugang Jin & Xinlin Wu & Zhanji Zheng, 2024. "Joint Optimal Design of Electric Bus Service and Charging Facilities," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6155-:d:1438045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bi, Zicheng & Song, Lingjun & De Kleine, Robert & Mi, Chunting Chris & Keoleian, Gregory A., 2015. "Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system," Applied Energy, Elsevier, vol. 146(C), pages 11-19.
    2. Mei, Yu & Gu, Weihua & Cassidy, Michael & Fan, Wenbo, 2021. "Planning skip-stop transit service under heterogeneous demands," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 503-523.
    3. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    4. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    5. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    6. Ding, Bing & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Sun, Hongbin, 2024. "A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings," Applied Energy, Elsevier, vol. 365(C).
    7. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    3. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Luo, Xiaoling & Fan, Wenbo, 2023. "Joint design of electric bus transit service and wireless charging facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    5. Fan, Wenbo & Gu, Weihua & Xu, Meng, 2024. "Optimal design of ride-pooling as on-demand feeder services," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    6. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    7. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    8. Wang, Ning & Tian, Hangqi & Wu, Huahua & Liu, Qiaoqian & Luan, Jie & Li, Yuan, 2023. "Cost-oriented optimization of the location and capacity of charging stations for the electric Robotaxi fleet," Energy, Elsevier, vol. 263(PC).
    9. Hatem Abdelaty & Ahmed Foda & Moataz Mohamed, 2023. "The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    10. Bálint Csonka, 2021. "Optimization of Static and Dynamic Charging Infrastructure for Electric Buses," Energies, MDPI, vol. 14(12), pages 1-18, June.
    11. Stokić, Marko & Dimitrijević, Branka, 2025. "Model for electrification of urban public transport lines with supercapacitor buses: A case study of Belgrade," Applied Energy, Elsevier, vol. 377(PD).
    12. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs, 2019. "Energy-aware predictive control for electrified bus networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Moradi, Mohammad Hossein & Widmer, Fabio & Turin, Raymond C. & Onder, Christopher H., 2024. "Optimization of charging infrastructure and strategy for an electrified public transportation system," Energy, Elsevier, vol. 313(C).
    14. Liu, Zhaocai & Wang, Qichao & Sigler, Devon & Kotz, Andrew & Kelly, Kenneth J. & Lunacek, Monte & Phillips, Caleb & Garikapati, Venu, 2023. "Data-driven simulation-based planning for electric airport shuttle systems: A real-world case study," Applied Energy, Elsevier, vol. 332(C).
    15. Yuping Lin & Kai Zhang & Zuo-Jun Max Shen & Lixin Miao, 2019. "Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    16. Foda, Ahmed & Mohamed, Moataz, 2024. "The impacts of optimization approaches on BEB system configuration in transit," Transport Policy, Elsevier, vol. 151(C), pages 12-23.
    17. Panta, Utsav & Gairola, Pranav & Nezamuddin, N., 2024. "Modelling benefit-to-cost ratio for initial phase electrification using battery electric bus," Transport Policy, Elsevier, vol. 145(C), pages 137-149.
    18. Sami M. Alshareef & Ahmed Fathy, 2023. "Efficient Red Kite Optimization Algorithm for Integrating the Renewable Sources and Electric Vehicle Fast Charging Stations in Radial Distribution Networks," Mathematics, MDPI, vol. 11(15), pages 1-30, July.
    19. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    20. Zhen, Li & Gu, Weihua, 2024. "Feeder bus service design under spatially heterogeneous demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6155-:d:1438045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.