IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006585.html
   My bibliography  Save this article

A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings

Author

Listed:
  • Ding, Bing
  • Li, Zening
  • Li, Zhengmao
  • Xue, Yixun
  • Chang, Xinyue
  • Su, Jia
  • Jin, Xiaolong
  • Sun, Hongbin

Abstract

To explore the bidirectional interaction between renewable energy and buildings in multi-agent energy systems, this paper proposes a distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings based on chance-constrained programming (CCP). First, the multi-agent energy system integrated with wind, solar, and buildings is comprehensively modeled with detailed electric and thermal characteristics for flexibility enhancement. Then for maximizing the profits of the cooperative energy system and each engaged agent, a Nash bargaining model is presented and is divided into two subproblems: the coalition income and the power payment. To preserve the privacy of agents, the adaptive alternating direction method of multipliers (ADMM) is exploited to solve both subproblems. Meanwhile, the CCP method is applied to address diverse uncertainties from wind and solar power generation as well as outdoor temperature. Finally, the effectiveness of the proposed strategy is validated. The simulation results show that, besides the privacy of information among all agents being well preserved, our strategy enhances the profits not only for the energy system but also for all engaged agents.

Suggested Citation

  • Ding, Bing & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Sun, Hongbin, 2024. "A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006585
    DOI: 10.1016/j.apenergy.2024.123275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.