IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925005963.html
   My bibliography  Save this article

A Bilevel robust coordination model for community integrated energy system with access to HFCEVs and EVs

Author

Listed:
  • Gu, Bo
  • Li, Fangxing
  • Mao, Chengxiong
  • Wang, Dan
  • Fan, Hua
  • Liu, Bin
  • Li, Wenhao

Abstract

It is of great interest to a price-maker community integrated energy system (CIES) that hydrogen fuel cell electric vehicle (HFCEV) and electric vehicle (EV) clusters participate in the system operation to achieve better flexibility. As such, this paper proposes a bilevel coordination optimization model considering the multiple uncertainties from each entity to minimize the operation cost. The Stackelberg game-based pricing framework is used to formulate the optimal model. The modeling of HFCEVs is based on the distributionally robust chance constrained problem to efficiently address the uncertainties from hydrogen refueling stations (HRSs). EVs are grouped into different classes via a clustering method, and the distributionally robust optimization model is built. Simulation results show that the proposed robust coordination optimization model reduces the operation cost by 0.76 %–2.01 % and improve the robustness under multiple uncertainties from each entity, maintaining about 50 % safety capacity for HRS.

Suggested Citation

  • Gu, Bo & Li, Fangxing & Mao, Chengxiong & Wang, Dan & Fan, Hua & Liu, Bin & Li, Wenhao, 2025. "A Bilevel robust coordination model for community integrated energy system with access to HFCEVs and EVs," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005963
    DOI: 10.1016/j.apenergy.2025.125866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lin & Tang, Zhiyuan & He, Shuaijia & Liu, Junyong, 2024. "Feasible operation region estimation of virtual power plant considering heterogeneity and uncertainty of distributed energy resources," Applied Energy, Elsevier, vol. 362(C).
    2. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    3. Pham, An T. & Lovdal, Larson & Zhang, Tianyi & Craig, Michael T., 2022. "A techno-economic analysis of distributed energy resources versus wholesale electricity purchases for fueling decarbonized heavy duty vehicles," Applied Energy, Elsevier, vol. 322(C).
    4. Panah, Payam Ghaebi & Bornapour, Mosayeb & Hemmati, Reza & Guerrero, Josep M., 2021. "Charging station Stochastic Programming for Hydrogen/Battery Electric Buses using Multi-Criteria Crow Search Algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Meng, Weiqi & Song, Dongran & Huang, Liansheng & Chen, Xiaojiao & Yang, Jian & Dong, Mi & Talaat, M. & Elkholy, M.H., 2024. "Distributed energy management of electric vehicle charging stations based on hierarchical pricing mechanism and aggregate feasible regions," Energy, Elsevier, vol. 291(C).
    6. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).
    7. Xia, Weiyi & Ren, Zhouyang & Qin, Huiling & Dong, ZhaoYang, 2024. "A coordinated operation method for networked hydrogen-power-transportation system," Energy, Elsevier, vol. 296(C).
    8. Ioana Popescu, 2007. "Robust Mean-Covariance Solutions for Stochastic Optimization," Operations Research, INFORMS, vol. 55(1), pages 98-112, February.
    9. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    10. Ajanovic, A. & Glatt, A. & Haas, R., 2021. "Prospects and impediments for hydrogen fuel cell buses," Energy, Elsevier, vol. 235(C).
    11. Gao, Yizhao & Zhu, Chong & Zhang, Xi & Guo, Bangjun, 2021. "Implementation and evaluation of a practical electrochemical- thermal model of lithium-ion batteries for EV battery management system," Energy, Elsevier, vol. 221(C).
    12. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    4. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    5. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    6. Zhao, Yue & Chen, Zhi & Lim, Andrew & Zhang, Zhenzhen, 2022. "Vessel deployment with limited information: Distributionally robust chance constrained models," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 197-217.
    7. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Other publications TiSEM d718e419-a375-4707-b206-e, Tilburg University, School of Economics and Management.
    8. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    9. Jonathan Li & Roy Kwon, 2013. "Portfolio selection under model uncertainty: a penalized moment-based optimization approach," Journal of Global Optimization, Springer, vol. 56(1), pages 131-164, May.
    10. Jun Li & Yizhe Huang & Yan‐Fu Li & Shuming Wang, 2023. "Redundancy allocation under state‐dependent distributional uncertainty of component lifetimes," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 930-950, March.
    11. Shipra Agrawal & Yichuan Ding & Amin Saberi & Yinyu Ye, 2012. "Price of Correlations in Stochastic Optimization," Operations Research, INFORMS, vol. 60(1), pages 150-162, February.
    12. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    13. Vincent Tsz Fai Chow & Zheng Cui & Daniel Zhuoyu Long, 2022. "Target-Oriented Distributionally Robust Optimization and Its Applications to Surgery Allocation," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2058-2072, July.
    14. Xie, Chi & Cui, Zheng & Long, Daniel Zhuoyu & Qi, Jin, 2025. "Distributionally robust optimization for minimizing price fluctuations in quota system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    15. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    16. Wang, Changjun & Chen, Shutong, 2020. "A distributionally robust optimization for blood supply network considering disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    17. Yuli Zhang & Zuo-Jun Max Shen & Shiji Song, 2018. "Exact Algorithms for Distributionally β -Robust Machine Scheduling with Uncertain Processing Times," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 662-676, November.
    18. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    19. Miguel A. Lejeune, 2012. "Game Theoretical Approach for Reliable Enhanced Indexation," Decision Analysis, INFORMS, vol. 9(2), pages 146-155, June.
    20. Soroush Saghafian & Brian Tomlin, 2016. "The Newsvendor under Demand Ambiguity: Combining Data with Moment and Tail Information," Operations Research, INFORMS, vol. 64(1), pages 167-185, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.