IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v198y2025ics1366554525001383.html
   My bibliography  Save this article

Multi-modal travel route planning considering environmental preference under uncertainties: A distributionally robust optimization approach

Author

Listed:
  • Wang, Xiangting
  • Lv, Ying
  • Sun, Huijun
  • Wang, Xingrong
  • Zhu, Chuang

Abstract

MaaS (Mobility as a Service) is the main trend in future transportation development. From the user perspective, it is primarily manifested as a shift in travel behavior, transitioning from reliance on single modes, such as private cars, to a mixed mode of various transportation options. In order to facilitate providing door-to-door services for travelers, this paper proposes a user-centric route planning approach under a new multi-modal framework, which it considers five travel modes, including bus, metro, car-hailing, as well as bike-sharing and walking that effectively addresses the last mile problem. Given the diverse travel objectives among travelers, this paper integrates travel time, cost, comfort, and green travel awareness into the objective function. Moreover, a multi-modal network travel route optimization model is established to generate route planning that aligns with traveler’s preferences. To address the challenges of multiple time uncertainties and incomplete distribution information resulting from problems such as road congestion and uneven distribution of bike-sharing and car-hailing during a trip, this paper proposes a distributionally robust optimization model to describe the uncertainties in two dimensions of the objective function. A generalized interval-valued trapezoidal possibility distribution is used to describe the time for finding a bike-sharing or for waiting a car-hailing service. The robust objective function and constraints are equivalently formulated as a deterministic model. The distributionally robust optimization model for uncertain travel times of buses and car-hailing services is demonstrated to be semi-infinite but can be safely and equivalently approximated under the Gaussian perturbations ambiguity set. Through comparative analyses with the traditional robust optimization method using experimental cases, the proposed distributionally robust optimization model exhibits superior performance. In addition, sensitivity analyzes are conducted on the relevant factors that influence travelers’ reduction in carbon emissions after the implementation of carbon incentive measures. The results demonstrate the effectiveness of the incentives introduced, which provides valuable information for the government to improve various incentive measures aimed at promoting low-carbon travel among travelers.

Suggested Citation

  • Wang, Xiangting & Lv, Ying & Sun, Huijun & Wang, Xingrong & Zhu, Chuang, 2025. "Multi-modal travel route planning considering environmental preference under uncertainties: A distributionally robust optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:transe:v:198:y:2025:i:c:s1366554525001383
    DOI: 10.1016/j.tre.2025.104097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525001383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:198:y:2025:i:c:s1366554525001383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.