IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v133y2025ics0305048325000052.html
   My bibliography  Save this article

Robust doctor–patient assignment with endogenous service duration uncertainty and no-show behavior

Author

Listed:
  • Ji, Menglei
  • Wang, Shanshan
  • Peng, Chun
  • Li, Jinlin

Abstract

In practice, patient’s service duration might be influenced by the workload of doctors who need to provide healthcare service. However, most existing studies have overlooked this correlation when scheduling patients and doctors. Motivated by this context, we incorporate the endogenous (decision-dependent) uncertain service duration, the presence of uncertainty dependent on assignment decisions, into the doctor–patient assignment problem with patient no-show behavior and propose a novel modeling framework. Specifically, we employ the distributionally robust optimization (DRO) approach that uses decision-dependent moment information to construct the ambiguity set of the service duration distribution. A novel decision-dependent DRO (DDRO) model is proposed for the doctor–patient assignment problem. The goal is to minimize the sum of the doctor’s assignment cost and penalty cost and the worst-case expected cost of overtime and cancellation cost. To solve this model, we propose an effective nested column-and-constraint generation (C&CG) solution scheme. This approach involves decomposing the model into an outer-level problem and an inner-level problem, both of which can be solved using the C&CG algorithm. This nested scheme enables us to efficiently solve the model and obtain optimal solutions. Numerical results show that the algorithm can solve most realistic-sized problem instances optimally within the two-hour time limit. In addition, to show the effectiveness of our new modeling framework, we also propose the classical DRO and stochastic programming (SP) models as the benchmark models in our out-of-sample test. The extensive numerical results show that when there exists variability in service duration and robustness in the ambiguity set, our DDRO model outperforms the DRO and SP approaches. In addition, when there are relatively enough doctors, the DDRO method is the best option for decision-makers to make assignment plans. We also show that the no-show behavior factor has a large effect on each model, and the decision-maker cannot ignore the factor, especially when the no-show rate is high. Overall, the numerical results demonstrate the importance of taking decision-dependent service duration uncertainty into account for the doctor–patient assignment problem and also provide an alternative modeling tool for healthcare managers to make assignment plans in scenarios where the service duration is influenced by doctors’ assignments.

Suggested Citation

  • Ji, Menglei & Wang, Shanshan & Peng, Chun & Li, Jinlin, 2025. "Robust doctor–patient assignment with endogenous service duration uncertainty and no-show behavior," Omega, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:jomega:v:133:y:2025:i:c:s0305048325000052
    DOI: 10.1016/j.omega.2025.103279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048325000052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2025.103279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lars Hellemo & Paul I. Barton & Asgeir Tomasgard, 2018. "Decision-dependent probabilities in stochastic programs with recourse," Computational Management Science, Springer, vol. 15(3), pages 369-395, October.
    2. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    3. Chun Peng & Erick Delage, 2024. "Data-Driven Optimization with Distributionally Robust Second Order Stochastic Dominance Constraints," Operations Research, INFORMS, vol. 72(3), pages 1298-1316, May.
    4. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    5. Karmel S. Shehadeh & Amy E. M. Cohn & Ruiwei Jiang, 2021. "Using stochastic programming to solve an outpatient appointment scheduling problem with random service and arrival times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 89-111, February.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Ahmad M. Ashkanani & Benjamin B. Dunford & Kevin J. Mumford, 2022. "Impact of Motivation and Workload on Service Time Components: An Empirical Analysis of Call Center Operations," Management Science, INFORMS, vol. 68(9), pages 6697-6715, September.
    8. Shanshan Wang & Jinlin Li & Sanjay Mehrotra, 2021. "Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1661-1677, October.
    9. Ruiz Duarte, José Luis & Fan, Neng & Jin, Tongdan, 2020. "Multi-process production scheduling with variable renewable integration and demand response," European Journal of Operational Research, Elsevier, vol. 281(1), pages 186-200.
    10. Nilay Noyan & Gábor Rudolf & Miguel Lejeune, 2022. "Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 729-751, March.
    11. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    12. Yang Zhan & Zheng Zhang, 2023. "A study on pre-charging strategy for appointment scheduling problem with no-shows," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 811-825, March.
    13. Matthews, Logan R. & Gounaris, Chrysanthos E. & Kevrekidis, Ioannis G., 2019. "Designing networks with resiliency to edge failures using two-stage robust optimization," European Journal of Operational Research, Elsevier, vol. 279(3), pages 704-720.
    14. Delasay, Mohammad & Ingolfsson, Armann & Kolfal, Bora & Schultz, Kenneth, 2019. "Load effect on service times," European Journal of Operational Research, Elsevier, vol. 279(3), pages 673-686.
    15. Cheng Guo & Merve Bodur & Dionne M. Aleman & David R. Urbach, 2021. "Logic-Based Benders Decomposition and Binary Decision Diagram Based Approaches for Stochastic Distributed Operating Room Scheduling," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1551-1569, October.
    16. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    17. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    18. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    19. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    20. S. Ayca Erdogan & Tracey L. Krupski & Jennifer Mason Lobo, 2018. "Optimization of Telemedicine Appointments in Rural Areas," Service Science, INFORMS, vol. 10(3), pages 261-276, September.
    21. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    22. Mark Braverman & Jing Chen & Sampath Kannan, 2016. "Optimal Provision-After-Wait in Healthcare," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 352-376, February.
    23. Beste Basciftci & Shabbir Ahmed & Nagi Gebraeel, 2020. "Data-driven maintenance and operations scheduling in power systems under decision-dependent uncertainty," IISE Transactions, Taylor & Francis Journals, vol. 52(6), pages 589-602, June.
    24. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    25. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2015. "Appointment Scheduling with Limited Distributional Information," Management Science, INFORMS, vol. 61(2), pages 316-334, February.
    26. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    27. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    28. Diwas S. Kc & Christian Terwiesch, 2009. "Impact of Workload on Service Time and Patient Safety: An Econometric Analysis of Hospital Operations," Management Science, INFORMS, vol. 55(9), pages 1486-1498, September.
    29. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    30. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    31. Motallebi Nasrabadi, Alireza & Najafi, Mehdi & Zolfagharinia, Hossein, 2020. "Considering short-term and long-term uncertainties in location and capacity planning of public healthcare facilities," European Journal of Operational Research, Elsevier, vol. 281(1), pages 152-173.
    32. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    2. Shuming Wang & Jun Li & Marcus Ang & Tsan Sheng Ng, 2024. "Appointment Scheduling with Delay Tolerance Heterogeneity," INFORMS Journal on Computing, INFORMS, vol. 36(5), pages 1201-1224, September.
    3. Shehadeh, Karmel S. & Cohn, Amy E.M. & Jiang, Ruiwei, 2020. "A distributionally robust optimization approach for outpatient colonoscopy scheduling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 549-561.
    4. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
    5. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    6. Tianqi Liu & Francisco Saldanha-da-Gama & Shuming Wang & Yuchen Mao, 2022. "Robust Stochastic Facility Location: Sensitivity Analysis and Exact Solution," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2776-2803, September.
    7. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.
    8. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    9. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    10. Lu, Haimin & Pei, Zhi, 2023. "Single machine scheduling with release dates: A distributionally robust approach," European Journal of Operational Research, Elsevier, vol. 308(1), pages 19-37.
    11. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    12. Menglei Ji & Mohammad Mosaffa & Amir Ardestani-Jaafari & Jinlin Li & Chun Peng, 2024. "Integration of text-mining and telemedicine appointment optimization," Annals of Operations Research, Springer, vol. 341(1), pages 621-645, October.
    13. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    14. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    15. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    16. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    17. Pejman Peykani & Roya Soltani & Cristina Tanasescu & Seyed Ehsan Shojaie & Alireza Jandaghian, 2025. "The Robust Malmquist Productivity Index: A Framework for Measuring Productivity Changes over Time Under Uncertainty," Mathematics, MDPI, vol. 13(11), pages 1-27, May.
    18. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    19. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    20. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:133:y:2025:i:c:s0305048325000052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.