IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224034819.html
   My bibliography  Save this article

Cooperative energy and reserve trading strategies for multiple integrated energy systems based on asymmetric nash bargaining theory

Author

Listed:
  • Wu, Biao
  • Zhang, Shaohua
  • Yuan, Chenxin
  • Wang, Xian
  • Wang, Fei
  • Zhang, Shengqi

Abstract

To tackle the issues of cooperative energy and reserve trading as well as fair cooperative benefit allocation among multiple integrated energy systems (IESs), this paper proposes a two-stage cooperative energy and reserve trading model for multiple integrated energy systems (MIESs). Specifically, at day-ahead stage, MIESs aim to maximize their overall profit through cooperative electricity and heat trading. At real-time stage, MIESs trade demand response (DR) reserve to minimize the overall wind power deviation compensation cost. To reduce the complexity in model solution, we transform the model into two sub-problems. In sub-problem 1, we determine the energy and DR reserve trading volumes. Here, distributionally robust optimization (DRO) is utilized to manage the severe uncertainties in wind power distribution. In sub-problem 2, based on the outcomes from sub-problem 1, we settle the energy and DR reserve trading prices. To ensure the fairness of benefit allocation, asymmetric Nash bargaining theory is applied to assess each IES's contributions in trading volumes and profit growth. Interval adaptive alternating direction method of multipliers (IA-ADMM) is used to preserve each IES's privacy. Finally, simulation results demonstrate that, compared with independent operation, cooperative trading among MIESs increases profits for all IESs, thereby motivating their participation in cooperative trading.

Suggested Citation

  • Wu, Biao & Zhang, Shaohua & Yuan, Chenxin & Wang, Xian & Wang, Fei & Zhang, Shengqi, 2024. "Cooperative energy and reserve trading strategies for multiple integrated energy systems based on asymmetric nash bargaining theory," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034819
    DOI: 10.1016/j.energy.2024.133703
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Hongjun & Li, Yunman & He, Shuaijia & Tang, Zhiyuan & Liu, Junyong, 2024. "Distributionally robust planning for power distribution network considering multi-energy station enabled integrated demand response," Energy, Elsevier, vol. 306(C).
    2. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    3. Wang, Xuejie & zhao, Huiru & Lu, Hao & Zhang, Yuanyuan & Wang, Yuwei & Wang, Jingbo, 2022. "Decentralized coordinated operation model of VPP and P2H systems based on stochastic-bargaining game considering multiple uncertainties and carbon cost," Applied Energy, Elsevier, vol. 312(C).
    4. Wu, Ying & Wu, Yanpeng & Cimen, Halil & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading," Applied Energy, Elsevier, vol. 314(C).
    5. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    6. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    7. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Ma, Xin, 2021. "Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage," Energy, Elsevier, vol. 221(C).
    8. Duan, Pengfei & Zhao, Bingxu & Zhang, Xinghui & Fen, Mengdan, 2023. "A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game," Energy, Elsevier, vol. 275(C).
    9. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).
    10. Ge, Shaoyun & Li, Jifeng & He, Xingtang & Liu, Hong, 2021. "Joint energy market design for local integrated energy system service procurement considering demand flexibility," Applied Energy, Elsevier, vol. 297(C).
    11. Wang, Ni & Liu, Ziyi & Heijnen, Petra & Warnier, Martijn, 2022. "A peer-to-peer market mechanism incorporating multi-energy coupling and cooperative behaviors," Applied Energy, Elsevier, vol. 311(C).
    12. Gan, Wei & Yan, Mingyu & Yao, Wei & Guo, Jianbo & Ai, Xiaomeng & Fang, Jiakun & Wen, Jinyu, 2021. "Decentralized computation method for robust operation of multi-area joint regional-district integrated energy systems with uncertain wind power," Applied Energy, Elsevier, vol. 298(C).
    13. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    14. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    15. Meng, Yuxiang & Ma, Gang & Yao, Yunting & Li, Hao, 2024. "Nash bargaining based integrated energy agent optimal operation strategy considering negotiation pricing for tradable green certificate," Applied Energy, Elsevier, vol. 356(C).
    16. Alizadeh, Ali & Esfahani, Moein & Dinar, Farid & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud & Busvelle, Eric, 2024. "A cooperative transactive multi-carrier energy control mechanism with P2P energy + reserve trading using Nash bargaining game theory under renewables uncertainty," Applied Energy, Elsevier, vol. 353(PB).
    17. Tan, Jin & Wu, Qiuwei & Wei, Wei & Liu, Feng & Li, Canbing & Zhou, Bin, 2020. "Decentralized robust energy and reserve Co-optimization for multiple integrated electricity and heating systems," Energy, Elsevier, vol. 205(C).
    18. Ma, Tengfei & Pei, Wei & Deng, Wei & Xiao, Hao & Yang, Yanhong & Tang, Chenghong, 2022. "A Nash bargaining-based cooperative planning and operation method for wind-hydrogen-heat multi-agent energy system," Energy, Elsevier, vol. 239(PE).
    19. Kawamori, Tomohiko, 2014. "A noncooperative foundation of the asymmetric Nash bargaining solution," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 12-15.
    20. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    21. Xia, Yuanxing & Xu, Qingshan & Tao, Siyu & Du, Pengwei & Ding, Yixing & Fang, Jicheng, 2022. "Preserving operation privacy of peer-to-peer energy transaction based on Enhanced Benders Decomposition considering uncertainty of renewable energy generations," Energy, Elsevier, vol. 250(C).
    22. Zheng, Weiye & Lu, Hao & Zhu, Jizhong, 2023. "Incentivizing cooperative electricity-heat operation: A distributed asymmetric Nash bargaining mechanism," Energy, Elsevier, vol. 280(C).
    23. Li, Peng & Wang, Zixuan & Liu, Haitao & Wang, Jiahao & Guo, Tianyu & Yin, Yunxing, 2021. "Bi-level optimal configuration strategy of community integrated energy system with coordinated planning and operation," Energy, Elsevier, vol. 236(C).
    24. Jing, Rui & Xie, Mei Na & Wang, Feng Xiang & Chen, Long Xiang, 2020. "Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management," Applied Energy, Elsevier, vol. 262(C).
    25. Fang, Xiaolun & Dong, Wei & Wang, Yubin & Yang, Qiang, 2024. "Multi-stage and multi-timescale optimal energy management for hydrogen-based integrated energy systems," Energy, Elsevier, vol. 286(C).
    26. Qu, Kaiping & Yu, Tao & Huang, Linni & Yang, Bo & Zhang, Xiaoshun, 2018. "Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market," Energy, Elsevier, vol. 149(C), pages 779-791.
    27. Zhong, Junjie & Cao, Yijia & Li, Yong & Tan, Yi & Peng, Yanjian & Cao, Lihua & Zeng, Zilong, 2021. "Distributed modeling considering uncertainties for robust operation of integrated energy system," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peiran Liang & Honghang Zhang & Rui Liang, 2025. "Cooperative Game Enabled Low-Carbon Energy Dispatching of Multi-Regional Integrated Energy Systems Considering Carbon Market," Energies, MDPI, vol. 18(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    2. Tariq, Abdul Haseeb & Amin, Uzma, 2025. "Peer-to-peer multi-energy trading in a decentralized network: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    3. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    4. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    5. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    6. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    7. Deng, Lirong & Fu, Yang & Guo, Qinglai & Li, Zhenkun & Xue, Yixun & Zhang, Zhiquan, 2024. "Energy and reserve procurement in integrated electricity and heating system: A high-dimensional covariance matrix approach based on stochastic differential equations," Energy, Elsevier, vol. 304(C).
    8. Yuchen Liu & Zhenhai Dou & Zheng Wang & Jiaming Guo & Jingwei Zhao & Wenliang Yin, 2024. "Optimal Configuration of Electricity-Heat Integrated Energy Storage Supplier and Multi-Microgrid System Scheduling Strategy Considering Demand Response," Energies, MDPI, vol. 17(21), pages 1-23, October.
    9. Zhao, Yunlong & Han, Fengwu & Zeng, Jianfeng & Zhang, Shengnan & Wu, Tianyu & Zhou, Luming & Gao, Jianwei, 2024. "Coordinated optimization of integrated rural multiple regional energy systems considering electricity to ammonia and improved Shapley value revenue allocation," Energy, Elsevier, vol. 313(C).
    10. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    11. Zhao, Bingxu & Cao, Xiaodong & Duan, Pengfei, 2024. "Cooperative operation of multiple low-carbon microgrids: An optimization study addressing gaming fraud and multiple uncertainties," Energy, Elsevier, vol. 297(C).
    12. Zheng, Weiye & Lu, Hao & Zhu, Jizhong, 2023. "Incentivizing cooperative electricity-heat operation: A distributed asymmetric Nash bargaining mechanism," Energy, Elsevier, vol. 280(C).
    13. Zheng, Weiye & Xu, Siyu & Lu, Hao & Wu, Wenchuan & Zhu, Jianquan, 2024. "Trading mechanism for social welfare maximization in integrated electricity and heat systems with multiple self-interested stakeholders," Energy, Elsevier, vol. 306(C).
    14. Zhang, Kaoshe & Gao, Congchong & Zhang, Gang & Xie, Tuo & Li, Hua, 2024. "Electricity and heat sharing strategy of regional comprehensive energy multi-microgrid based on double-layer game," Energy, Elsevier, vol. 293(C).
    15. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    16. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    17. Zhang, Xiaofeng & Zhan, Yu & Zhao, Tingbo & Mei, Jin & Jiao, Fan & Zeng, Rong & Sun, Xiaoqin & Wang, Meng, 2024. "Three-stage optimization of integrated energy system considering source/load uncertainties and orderly charging of NEVs," Energy, Elsevier, vol. 313(C).
    18. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    19. Barone, G. & Buonomano, A. & Cipolla, G. & Forzano, C. & Giuzio, G.F. & Russo, G., 2024. "Designing aggregation criteria for end-users integration in energy communities: Energy and economic optimisation based on hybrid neural networks models," Applied Energy, Elsevier, vol. 371(C).
    20. Liu, Zhi-Feng & Luo, Xing-Fu & Chen, Xiao-Rui & Huang, Ya-He & Liu, You-Yuan & Tang, Yu & Kang, Qing & Guo, Liang, 2024. "An innovative bi-level scheduling model with hydrogen-thermal-electricity co-supply and dynamic carbon capture strategies for regional integrated energy systems considering hybrid games," Renewable Energy, Elsevier, vol. 237(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.