IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v52y2014icp12-15.html
   My bibliography  Save this article

A noncooperative foundation of the asymmetric Nash bargaining solution

Author

Listed:
  • Kawamori, Tomohiko

Abstract

We consider a noncooperative multilateral bargaining model with heterogeneous time preferences in which the first rejector of a proposal in the current round becomes the proposer in the next round. We show the existence of a stationary subgame perfect equilibrium (SSPE), characterize SSPEs and show the efficiency of SSPEs. We show that any sequence of SSPE payoff profiles converges to the asymmetric Nash bargaining solution weighted by the inverses of discount rates as the bargaining friction vanishes.

Suggested Citation

  • Kawamori, Tomohiko, 2014. "A noncooperative foundation of the asymmetric Nash bargaining solution," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 12-15.
  • Handle: RePEc:eee:mateco:v:52:y:2014:i:c:p:12-15
    DOI: 10.1016/j.jmateco.2014.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406814000433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2014.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    2. Ken Binmore & Ariel Rubinstein & Asher Wolinsky, 1986. "The Nash Bargaining Solution in Economic Modelling," RAND Journal of Economics, The RAND Corporation, vol. 17(2), pages 176-188, Summer.
    3. Britz, V. & Herings, P.J.J. & Predtetchinski, A., 2012. "On the convergence to the Nash bargaining solution for endogenous bargaining protocols," Research Memorandum 030, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    4. Kalyan Chatterjee & Bhaskar Dutia & Debraj Ray & Kunal Sengupta, 2013. "A Noncooperative Theory of Coalitional Bargaining," World Scientific Book Chapters, in: Bargaining in the Shadow of the Market Selected Papers on Bilateral and Multilateral Bargaining, chapter 5, pages 97-111, World Scientific Publishing Co. Pte. Ltd..
    5. Klaus Kultti & Hannu Vartiainen, 2010. "Multilateral non-cooperative bargaining in a general utility space," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(4), pages 677-689, October.
    6. Britz, Volker & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2010. "Non-cooperative support for the asymmetric Nash bargaining solution," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1951-1967, September.
    7. Laruelle, Annick & Valenciano, Federico, 2007. "Bargaining in committees as an extension of Nash's bargaining theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 291-305, January.
    8. Okada, Akira, 2010. "The Nash bargaining solution in general n-person cooperative games," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2356-2379, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Thomson, 2022. "On the axiomatic theory of bargaining: a survey of recent results," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 491-542, December.
    2. Roberto Serrano, 2020. "Sixty-Seven Years of the Nash Program: Time for Retirement?," Working Papers 2020-20, Brown University, Department of Economics.
    3. Mao, Liang, 2020. "Optimal recommendation in two-player bargaining games," Mathematical Social Sciences, Elsevier, vol. 107(C), pages 41-45.
    4. Andersson, Ola & Argenton, Cédric & Weibull, Jörgen W., 2018. "Robustness to strategic uncertainty in the Nash demand game," Mathematical Social Sciences, Elsevier, vol. 91(C), pages 1-5.
    5. Roberto Serrano, 2021. "Sixty-seven years of the Nash program: time for retirement?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 35-48, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Britz, Volker & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2014. "On the convergence to the Nash bargaining solution for action-dependent bargaining protocols," Games and Economic Behavior, Elsevier, vol. 86(C), pages 178-183.
    2. Britz, Volker & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2015. "Delay, multiplicity, and non-existence of equilibrium in unanimity bargaining games," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 192-202.
    3. Volker Britz & P. Jean-Jacques Herings & Arkadi Predtetchinski, 2014. "Equilibrium Delay and Non-existence of Equilibrium in Unanimity Bargaining Games," CER-ETH Economics working paper series 14/196, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    4. Bram Driesen & Peter Eccles & Nora Wegner, 2017. "A non-cooperative foundation for the continuous Raiffa solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1115-1135, November.
    5. Venkat Venkatasubramanian & Yu Luo, 2018. "How much income inequality is fair? Nash bargaining solution and its connection to entropy," Papers 1806.05262, arXiv.org.
    6. Chaturvedi, Rakesh, 2016. "Efficient coalitional bargaining with noncontingent offers," Games and Economic Behavior, Elsevier, vol. 100(C), pages 125-141.
    7. Harstad, Bård, 2023. "Pledge-and-review bargaining," Journal of Economic Theory, Elsevier, vol. 207(C).
    8. Maria Montero, 2023. "Coalition Formation in Games with Externalities," Dynamic Games and Applications, Springer, vol. 13(2), pages 525-548, June.
    9. Marco Rogna, 2022. "The Burning Coalition Bargaining Model," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(3), pages 735-768, October.
    10. P. Jean-Jacques Herings & Harold Houba, 2022. "Costless delay in negotiations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(1), pages 69-93, July.
    11. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2021. "Multi-lateral strategic bargaining without stationarity," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    12. Britz, V. & Herings, P.J.J. & Predtetchinski, A., 2012. "On the convergence to the Nash bargaining solution for endogenous bargaining protocols," Research Memorandum 030, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    13. Harstad, Bård, 2021. "A Theory of Pledge-and-Review Bargaining," Memorandum 5/2022, Oslo University, Department of Economics, revised 21 Jun 2021.
    14. Mao, Liang, 2020. "Optimal recommendation in two-player bargaining games," Mathematical Social Sciences, Elsevier, vol. 107(C), pages 41-45.
    15. Kawamori, Tomohiko & Miyakawa, Toshiji, 2019. "Bargaining delay under partial breakdowns and externalities," Economics Letters, Elsevier, vol. 183(C), pages 1-1.
    16. Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2011. "On the asymptotic uniqueness of bargaining equilibria," Economics Letters, Elsevier, vol. 111(3), pages 243-246, June.
    17. P. Jean-Jacques Herings & A. Predtetchinski, 2016. "Bargaining under monotonicity constraints," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 62(1), pages 221-243, June.
    18. Andersson, Ola & Argenton, Cédric & Weibull, Jörgen W., 2018. "Robustness to strategic uncertainty in the Nash demand game," Mathematical Social Sciences, Elsevier, vol. 91(C), pages 1-5.
    19. Ray, Debraj & Vohra, Rajiv, 2015. "Coalition Formation," Handbook of Game Theory with Economic Applications,, Elsevier.
    20. P. Jean-Jacques Herings & Harold Houba, 2010. "The Condorcet Paradox Revisited," Tinbergen Institute Discussion Papers 10-026/1, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:52:y:2014:i:c:p:12-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.