IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5763-d1429926.html
   My bibliography  Save this article

Decision-Making Approach to Design a Sustainable Photovoltaic Closed-Loop Supply Chain Considering Market Share for Electric Vehicle Energy

Author

Listed:
  • Hadi Shenabi

    (Department of Industrial Engineering, College of Engineering, Shahed University, Tehran 3319118651, Iran
    These authors contributed equally to this work.)

  • Rashed Sahraeian

    (Department of Industrial Engineering, College of Engineering, Shahed University, Tehran 3319118651, Iran
    These authors contributed equally to this work.)

Abstract

This study aims to develop a model for the closed-loop supply chain of photovoltaic (PV) systems. The primary objective addresses strategic and tactical decision-making using a two-stage approach. To pinpoint suitable locations for solar power plants, the PROMETHEE II method is utilized, which is a component of multi-attribute decision making (MADM) approaches. Next, a multi-objective modeling of the closed-loop PV supply chain is conducted. This model aims to minimize total supply chain costs, reduce environmental impacts, mitigate adverse social effects, maximize the on-time delivery (OTD) of manufactured products, and maximize market share. Additionally, a robust fuzzy mathematical model is introduced to examine the model’s sustainability under various uncertainties. An evaluation of the effectiveness and utility of this model is conducted in Tehran city. Furthermore, a comprehensive analysis of various supply chain costs indicates that production centers have the highest costs, while separation centers have the lowest costs.

Suggested Citation

  • Hadi Shenabi & Rashed Sahraeian, 2024. "Decision-Making Approach to Design a Sustainable Photovoltaic Closed-Loop Supply Chain Considering Market Share for Electric Vehicle Energy," Sustainability, MDPI, vol. 16(13), pages 1-28, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5763-:d:1429926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Albrecht & Martin Steinrücke, 2020. "Continuous-time scheduling of production, distribution and sales in photovoltaic supply chains with declining prices," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 629-667, September.
    2. Chen, Zhisong & Ivan Su, Shong-Iee, 2019. "Social welfare maximization with the least subsidy: Photovoltaic supply chain equilibrium and coordination with fairness concern," Renewable Energy, Elsevier, vol. 132(C), pages 1332-1347.
    3. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    4. Ravindranath, N. H. & Hall, D. O., 1995. "Biomass, Energy, and Environment: A Developing Country Perspective from India," OUP Catalogue, Oxford University Press, number 9780198564362.
    5. Zhisong Chen & Keith C. K. Cheung & Xiangtong Qi, 2021. "Subsidy policies and operational strategies for multiple competing photovoltaic supply chains," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 914-955, December.
    6. Chen, Zhisong & Sun, Ping, 2024. "Generic technology R&D strategies in dual competing photovoltaic supply chains: A social welfare maximization perspective," Applied Energy, Elsevier, vol. 353(PB).
    7. Ding, Bing & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Sun, Hongbin, 2024. "A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings," Applied Energy, Elsevier, vol. 365(C).
    8. Hartner, Michael & Ortner, André & Hiesl, Albert & Haas, Reinhard, 2015. "East to west – The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective," Applied Energy, Elsevier, vol. 160(C), pages 94-107.
    9. Wong, J.H. & Royapoor, M. & Chan, C.W., 2016. "Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 608-618.
    10. Kharaji Manouchehrabadi, Maedeh & Yaghoubi, Saeed & Tajik, Javad, 2020. "Optimal scenarios for solar cell supply chain considering degradation in powerhouses," Renewable Energy, Elsevier, vol. 145(C), pages 1104-1125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matinfard, Sahar & Yaghoubi, Saeed & Kharaji Manouchehrabadi, Maedeh, 2024. "A coordinated approach for a three-echelon solar-wind energy supply with government intervention," Utilities Policy, Elsevier, vol. 86(C).
    2. Nili, Maryam & Seyedhosseini, Seyed Mohammad & Jabalameli, Mohammad Saeed & Dehghani, Ehsan, 2021. "A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    4. Chen, Zhisong & Sun, Ping, 2024. "Generic technology R&D strategies in dual competing photovoltaic supply chains: A social welfare maximization perspective," Applied Energy, Elsevier, vol. 353(PB).
    5. Zhisong Chen & Keith C. K. Cheung & Xiangtong Qi, 2021. "Subsidy policies and operational strategies for multiple competing photovoltaic supply chains," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 914-955, December.
    6. Zhao, Jing & Zhang, Qin, 2021. "The effect of contract methods on the lead time of a two-level photovoltaic supply chain: revenue-sharing vs. cost-sharing," Energy, Elsevier, vol. 231(C).
    7. Mohd Bilal & Pitshou N. Bokoro & Gulshan Sharma & Giovanni Pau, 2024. "A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources," Energies, MDPI, vol. 17(16), pages 1-35, August.
    8. Banerjee, Rangan, 2006. "Comparison of options for distributed generation in India," Energy Policy, Elsevier, vol. 34(1), pages 101-111, January.
    9. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    10. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    11. Tripathi, Arun K & Iyer, P.V.R & Chandra Kandpal, Tara, 1999. "Financial analysis of biomass gasifier based water pumping in India," Energy, Elsevier, vol. 24(6), pages 511-517.
    12. Liu, Gang & Lucas, Mario & Shen, Lei, 2008. "Rural household energy consumption and its impacts on eco-environment in Tibet: Taking Taktse county as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1890-1908, September.
    13. Jingura, Raphael Muzondiwa & Musademba, Downmore & Kamusoko, Reckson, 2013. "A review of the state of biomass energy technologies in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 652-659.
    14. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    15. Esraa M. Abd Elsadek & Hossam Kotb & Ayman Samy Abdel-Khalik & Yasser Aboelmagd & Aly. H. Abdelbaky Elbatran, 2024. "Experimental and Techno-Economic Analysis of Solar PV System for Sustainable Building and Greenhouse Gas Emission Mitigation in Harsh Climate: A Case Study of Aswan Educational Building," Sustainability, MDPI, vol. 16(13), pages 1-31, June.
    16. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    17. Mohammad H. Naraghi & Ehsan Atefi, 2022. "Optimum Solar Panel Orientation and Performance: A Climatic Data-Driven Metaheuristic Approach," Energies, MDPI, vol. 15(2), pages 1-16, January.
    18. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    19. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    20. Giri, Binoy Krishna & Roy, Sankar Kumar, 2024. "Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain," Applied Energy, Elsevier, vol. 363(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5763-:d:1429926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.