IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3642-d1070513.html
   My bibliography  Save this article

The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions

Author

Listed:
  • Hatem Abdelaty

    (Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada)

  • Ahmed Foda

    (Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
    Department of Mathematics & Engineering Physics, Mansoura University, Mansoura 35516, Egypt)

  • Moataz Mohamed

    (Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada)

Abstract

The optimization of battery electric buses (BEBs) systems in transit is receiving considerable scholarly and practical attention. The practice is to minimize the total system cost to inform the optimal resource allocation. However, a minimization approach is insensitive to assessing and accommodating the robustness of BEB transit systems under disruption. This study evaluates the robustness of the BEB transit system under charging infrastructure disruption using complex network theory. The results of a mid-size multi-hub network indicate that the BEB system is robust against disruption if the disruption is resolved in a timely manner (within one hour). Furthermore, multi-charger charging stations have severe impacts on the system’s robustness. Overall, the BEB system robustness is more sensitive to the hourly number of buses charging at each station and the duration of the charging events.

Suggested Citation

  • Hatem Abdelaty & Ahmed Foda & Moataz Mohamed, 2023. "The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3642-:d:1070513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia, Tao & Liu, Wenxuan & Liu, Xintao, 2021. "A cross-city exploratory analysis of the robustness of bus transit networks using open-source data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    2. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    3. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    4. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    5. Alwesabi, Yaseen & Avishan, Farzad & Yanıkoğlu, İhsan & Liu, Zhaocai & Wang, Yong, 2022. "Robust strategic planning of dynamic wireless charging infrastructure for electric buses," Applied Energy, Elsevier, vol. 307(C).
    6. Bi, Zicheng & Keoleian, Gregory A. & Ersal, Tulga, 2018. "Wireless charger deployment for an electric bus network: A multi-objective life cycle optimization," Applied Energy, Elsevier, vol. 225(C), pages 1090-1101.
    7. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    8. Wang, Yusheng & Huang, Yongxi & Xu, Jiuping & Barclay, Nicole, 2017. "Optimal recharging scheduling for urban electric buses: A case study in Davis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 115-132.
    9. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    10. Yuping Lin & Kai Zhang & Zuo-Jun Max Shen & Lixin Miao, 2019. "Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Foda & Moataz Mohamed & Hany Farag & Ehab El-Saadany, 2023. "A resilient battery electric bus transit system configuration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    2. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    3. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    4. Bálint Csonka, 2021. "Optimization of Static and Dynamic Charging Infrastructure for Electric Buses," Energies, MDPI, vol. 14(12), pages 1-18, June.
    5. He, Yi & Liu, Zhaocai & Zhang, Yiming & Song, Ziqi, 2023. "Time-dependent electric bus and charging station deployment problem," Energy, Elsevier, vol. 282(C).
    6. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    7. Liu, Zhaocai & Wang, Qichao & Sigler, Devon & Kotz, Andrew & Kelly, Kenneth J. & Lunacek, Monte & Phillips, Caleb & Garikapati, Venu, 2023. "Data-driven simulation-based planning for electric airport shuttle systems: A real-world case study," Applied Energy, Elsevier, vol. 332(C).
    8. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
    9. Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    10. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    11. Rinaldi, Marco & Picarelli, Erika & D'Ariano, Andrea & Viti, Francesco, 2020. "Mixed-fleet single-terminal bus scheduling problem: Modelling, solution scheme and potential applications," Omega, Elsevier, vol. 96(C).
    12. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Xinkuo Xu & Xiaofeng Lv & Liyan Han, 2019. "Carbon Asset of Electrification: Valuing the Transition from Fossil Fuel-Powered Buses to Battery Electric Buses in Beijing," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    14. Xiaoqing Su & Lanqing Jiang & Yucheng Huang, 2023. "Design of Electric Bus Transit Routes with Charging Stations under Demand Uncertainty," Energies, MDPI, vol. 16(4), pages 1-16, February.
    15. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal scheduling for electric bus fleets based on dynamic programming approach by considering battery capacity fade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    17. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    18. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    19. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    20. Alvo, Matías & Angulo, Gustavo & Klapp, Mathias A., 2021. "An exact solution approach for an electric bus dispatch problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3642-:d:1070513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.