IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004730.html
   My bibliography  Save this article

A Type-2 fuzzy hybrid preference optimization methodology for electric vehicle charging station location

Author

Listed:
  • Men, Jinkun
  • Zhao, Chunmeng

Abstract

This work focuses on a hybrid preference-based electric vehicle charging station location problem, which considers multiple optimization preferences of distribution network operators, charge station owners, and electric vehicle users. The problem is formulated by an uncertain mixed-integer programming model. Due to the multi-fold uncertainty of the charging process, the uncertain model parameters are expressed as Type-2 fuzzy variables (T2-FVs). The critical value-based type reduction method is adopted to handle the high computational complexity. The proposed uncertain model is converted to its equivalent deterministic chance-constrained programming model. The deterministic counterpart is solved by General Algebraic Modeling System (GAMS). At last, numerical simulations are performed to demonstrate the proposed location strategy as well as some sensitivity analyses. The results indicate that for any given parameters, the equivalent deterministic model follows the general form of mixed-integer programming one that can be easily solved by GAMS. The proposed methodology can effectively handle the multi-fold uncertainty of the charging process. Compared with crisp models, the proposed location strategy can provide more robust location decisions for electric vehicle charging stations (EVCSs). In addition, we also found that different interest groups have conflicting preferences for the locations of EVCSs, so considering multiple hybrid optimization preferences is necessary.

Suggested Citation

  • Men, Jinkun & Zhao, Chunmeng, 2024. "A Type-2 fuzzy hybrid preference optimization methodology for electric vehicle charging station location," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004730
    DOI: 10.1016/j.energy.2024.130701
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.