IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5228-d1189079.html
   My bibliography  Save this article

Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems

Author

Listed:
  • Ali M. Eltamaly

    (Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
    Saudi Electricity Company Chair in Power System, Reliability and Security, King Saud University, Riyadh 11421, Saudi Arabia
    Department of Electrical Engineering, Mansoura University, Mansoura 35516, Egypt)

  • Zeyad A. Almutairi

    (Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
    Mechanical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
    K.A.CARE Energy Research and Innovation Center at Riyadh, King Saud University, Riyadh 11421, Saudi Arabia)

  • Mohamed A. Abdelhamid

    (Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile)

Abstract

Due to the rapid advancement in the use of photovoltaic (PV) energy systems, it has become critical to look for ways to improve the energy generated by them. The extracted power from the PV modules is proportional to the output voltage. The relationship between output power and array voltage has only one peak under uniform irradiance, whereas it has multiple peaks under partial shade conditions (PSCs). There is only one global peak (GP) and many local peaks (LPs), where the typical maximum power point trackers (MPPTs) may become locked in one of the LPs, significantly reducing the PV system’s generated power and efficiency. The metaheuristic optimization algorithms (MOAs) solved this problem, albeit at the expense of the convergence time, which is one of these algorithms’ key shortcomings. Most MOAs attempt to lower the convergence time at the cost of the failure rate and the accuracy of the findings because these two factors are interdependent. To address these issues, this work introduces the dandelion optimization algorithm (DOA), a novel optimization algorithm. The DOA’s convergence time and failure rate are compared to other modern MOAs in critical scenarios of partial shade PV systems to demonstrate the DOA’s superiority. The results obtained from this study showed substantial performance improvement compared to other MOAs, where the convergence time was reduced to 0.4 s with zero failure rate compared to 0.9 s, 1.25 s, and 0.43 s for other MOAs under study. The optimal number of search agents in the swarm, the best initialization of search agents, and the optimal design of the dc–dc converter are introduced for optimal MPPT performance.

Suggested Citation

  • Ali M. Eltamaly & Zeyad A. Almutairi & Mohamed A. Abdelhamid, 2023. "Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems," Energies, MDPI, vol. 16(13), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5228-:d:1189079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    2. Eltamaly, Ali M., 2021. "A novel musical chairs algorithm applied for MPPT of PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Yirga Belay Muna & Cheng-Chien Kuo, 2022. "Feasibility and Techno-Economic Analysis of Electric Vehicle Charging of PV/Wind/Diesel/Battery Hybrid Energy System with Different Battery Technology," Energies, MDPI, vol. 15(12), pages 1-20, June.
    4. Khanna, Vandana & Das, B.K. & Bisht, Dinesh & Vandana, & Singh, P.K., 2015. "A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 105-113.
    5. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    6. Alexander Lavrik & Yuri Zhukovskiy & Pavel Tcvetkov, 2021. "Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting," Energies, MDPI, vol. 14(16), pages 1-19, August.
    7. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    8. Jiao, Bin & Lian, Zhigang & Gu, Xingsheng, 2008. "A dynamic inertia weight particle swarm optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 698-705.
    9. Adyr A. Estévez-Bén & Alfredo Alvarez-Diazcomas & Juvenal Rodríguez-Reséndiz, 2020. "Transformerless Multilevel Voltage-Source Inverter Topology Comparative Study for PV Systems," Energies, MDPI, vol. 13(12), pages 1-26, June.
    10. Sundareswaran, K. & Vignesh kumar, V. & Palani, S., 2015. "Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions," Renewable Energy, Elsevier, vol. 75(C), pages 308-317.
    11. Baldwin Cortés & Roberto Tapia & Juan J. Flores, 2021. "System-Independent Irradiance Sensorless ANN-Based MPPT for Photovoltaic Systems in Electric Vehicles," Energies, MDPI, vol. 14(16), pages 1-18, August.
    12. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    13. Rabeh Abbassi & Salem Saidi & Abdelkader Abbassi & Houssem Jerbi & Mourad Kchaou & Bilal Naji Alhasnawi, 2023. "Accurate Key Parameters Estimation of PEMFCs’ Models Based on Dandelion Optimization Algorithm," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    14. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    15. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    16. Ali M. Eltamaly, 2021. "An Improved Cuckoo Search Algorithm for Maximum Power Point Tracking of Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eltamaly, Ali M., 2021. "A novel musical chairs algorithm applied for MPPT of PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Adel O. Baatiah & Ali M. Eltamaly & Majed A. Alotaibi, 2023. "Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction," Energies, MDPI, vol. 16(18), pages 1-15, September.
    3. Ali M. Eltamaly, 2021. "An Improved Cuckoo Search Algorithm for Maximum Power Point Tracking of Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-26, February.
    4. Majed A. Alotaibi & Ali M. Eltamaly, 2021. "A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia," Energies, MDPI, vol. 14(21), pages 1-24, October.
    5. Mohamed Zaghloul-El Masry & Abdallah Mohammed & Fathy Amer & Roaa Mubarak, 2023. "New Hybrid MPPT Technique Including Artificial Intelligence and Traditional Techniques for Extracting the Global Maximum Power from Partially Shaded PV Systems," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    6. Elmamoune Halassa & Lakhdar Mazouz & Abdellatif Seghiour & Aissa Chouder & Santiago Silvestre, 2023. "Revolutionizing Photovoltaic Systems: An Innovative Approach to Maximum Power Point Tracking Using Enhanced Dandelion Optimizer in Partial Shading Conditions," Energies, MDPI, vol. 16(9), pages 1-23, April.
    7. Muhannad Alaraj & Astitva Kumar & Ibrahim Alsaidan & Mohammad Rizwan & Majid Jamil, 2022. "An Advanced and Robust Approach to Maximize Solar Photovoltaic Power Production," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    8. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    9. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    11. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    12. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    13. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    14. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    15. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    16. Tingting Pei & Xiaohong Hao & Qun Gu, 2018. "A Novel Global Maximum Power Point Tracking Strategy Based on Modified Flower Pollination Algorithm for Photovoltaic Systems under Non-Uniform Irradiation and Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-16, October.
    17. Rabeh Abbassi & Salem Saidi & Shabana Urooj & Bilal Naji Alhasnawi & Mohamad A. Alawad & Manoharan Premkumar, 2023. "An Accurate Metaheuristic Mountain Gazelle Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models," Mathematics, MDPI, vol. 11(22), pages 1-21, November.
    18. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    19. Ehab Mohamed Ali & Ahmed K. Abdelsalam & Karim H. Youssef & Ahmed A. Hossam-Eldin, 2021. "An Enhanced Cuckoo Search Algorithm Fitting for Photovoltaic Systems’ Global Maximum Power Point Tracking under Partial Shading Conditions," Energies, MDPI, vol. 14(21), pages 1-21, November.
    20. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5228-:d:1189079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.