IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2312-d1647775.html
   My bibliography  Save this article

Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review

Author

Listed:
  • Yan Tong

    (Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China)

  • Issam Salhi

    (FEMTO-ST Institute, CNRS, UTBM, Université Marie et Louis Pasteur, F-90000 Belfort, France)

  • Qin Wang

    (Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
    Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China)

  • Gang Lu

    (State Grid Energy Research Institute, Beijing 102209, China)

  • Shengyu Wu

    (State Grid Energy Research Institute, Beijing 102209, China)

Abstract

Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional DC-DC converters are pivotal in HESS, enabling efficient energy management, voltage matching, and bidirectional energy flow between storage devices and vehicle systems. This paper provides a comprehensive review of bidirectional DC-DC converter topologies for EV applications, which focuses on both non-isolated and isolated designs. Non-isolated topologies, such as Buck-Boost, Ćuk, and interleaved converters, are featured for their simplicity, efficiency, and compactness. Isolated topologies, such as dual active bridge (DAB) and push-pull converters, are featured for their high voltage gain and electrical isolation. An evaluation framework is proposed, incorporating key performance metrics such as voltage stress, current stress, power density, and switching frequency. The results highlight the strengths and limitations of various converter topologies, offering insights into their optimization for EV applications. Future research directions include integrating wide-bandgap devices, advanced control strategies, and novel topologies to address challenges such as wide voltage gain, high efficiency, and compact design. This work underscores the critical role of bidirectional DC-DC converters in advancing energy-efficient and sustainable EV technologies.

Suggested Citation

  • Yan Tong & Issam Salhi & Qin Wang & Gang Lu & Shengyu Wu, 2025. "Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(9), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2312-:d:1647775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    2. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    3. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control," Applied Energy, Elsevier, vol. 355(C).
    4. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Health-conscious deep reinforcement learning energy management for fuel cell buses integrating environmental and look-ahead road information," Energy, Elsevier, vol. 290(C).
    5. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    6. Songyan Niu & Qingyu Zhao & Haibiao Chen & Hang Yu & Shuangxia Niu & Linni Jian, 2022. "Underwater Wireless Charging System of Unmanned Surface Vehicles with High Power, Large Misalignment Tolerance and Light Weight: Analysis, Design and Optimization," Energies, MDPI, vol. 15(24), pages 1-19, December.
    7. Lu, Dagang & Yi, Fengyan & Hu, Donghai & Li, Jianwei & Yang, Qingqing & Wang, Jing, 2023. "Online optimization of energy management strategy for FCV control parameters considering dual power source lifespan decay synergy," Applied Energy, Elsevier, vol. 348(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    2. Tang, Tianfeng & Peng, Qianlong & Shi, Qing & Peng, Qingguo & Zhao, Jin & Chen, Chaoyi & Wang, Guangwei, 2024. "Energy management of fuel cell hybrid electric bus in mountainous regions: A deep reinforcement learning approach considering terrain characteristics," Energy, Elsevier, vol. 311(C).
    3. Zhang, Yahui & You, Xiongxiong & Song, Yunfeng & Zhao, Yahui & Wei, Zeyi & Jiao, Xiaohong, 2025. "Hierarchical eco-driving of connected hybrid electric vehicles: Integrating predictive cruise control and cost-to-go approximation-guided energy management," Energy, Elsevier, vol. 319(C).
    4. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    5. Zhao, Yinghua & Huang, Siqi & Wang, Xiaoyu & Shi, Jingwu & Yao, Shouwen, 2024. "Energy management with adaptive moving average filter and deep deterministic policy gradient reinforcement learning for fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 312(C).
    6. Wang, Zhiguo & Wei, Hongqian & Xi, Yecheng & Xiao, Gongwei, 2024. "Data-driven energy utilization for plug-in hybrid electric bus with driving patten application and battery health considerations," Energy, Elsevier, vol. 310(C).
    7. Zhiming Zhang & Chenfu Quan & Sai Wu & Tong Zhang & Jinming Zhang, 2024. "An Electrochemical Performance Model Considering of Non-Uniform Gas Distribution Based on Porous Media Method in PEMFC Stack," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    8. Ziye Wang & Ren He & Donghai Hu & Dagang Lu, 2025. "Energy Management Strategy for Fuel Cell Vehicles Based on Deep Transfer Reinforcement Learning," Energies, MDPI, vol. 18(9), pages 1-18, April.
    9. Zhang, Dongfang & Sun, Wei & Zou, Yuan & Zhang, Xudong, 2025. "Energy management in HDHEV with dual APUs: Enhancing soft actor-critic using clustered experience replay and multi-dimensional priority sampling," Energy, Elsevier, vol. 319(C).
    10. Li, Jianwei & Wang, Tianci & Yang, Qingqing & Tian, Zhonghao & Lv, Hong & Wang, Xuechao & Shen, Jun, 2025. "A safe region method to quantitatively evaluate the safety of fuel cell operating states," Applied Energy, Elsevier, vol. 377(PA).
    11. Houssam Eddine Ghadbane & Ahmed F. Mohamed, 2025. "Optimizing Fuel Economy in Hybrid Electric Vehicles Using the Equivalent Consumption Minimization Strategy Based on the Arithmetic Optimization Algorithm," Mathematics, MDPI, vol. 13(9), pages 1-18, May.
    12. Li, Xuebo & Zhao, Xuan & Xu, Shiwei & Wei, Lulu & He, Jingjing & Shi, Peilong & Li, Meiying, 2025. "A novel braking energy management strategy for battery electric trucks with hydraulic retarder on long downhill," Energy, Elsevier, vol. 322(C).
    13. Yanwei Liu & Mingda Wang & Jialuo Tan & Jie Ye & Jiansheng Liang, 2024. "Real-Time Energy Management Strategy for Fuel Cell Vehicles Based on DP and Rule Extraction," Energies, MDPI, vol. 17(14), pages 1-20, July.
    14. Hu, Dong & Huang, Chao & Wu, Jingda & Wei, Henglai & Pi, Dawei, 2025. "Enhancing data-driven energy management strategy via digital expert guidance for electrified vehicles," Applied Energy, Elsevier, vol. 381(C).
    15. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Health-conscious deep reinforcement learning energy management for fuel cell buses integrating environmental and look-ahead road information," Energy, Elsevier, vol. 290(C).
    16. Song, Dafeng & Wu, Qingtao & Zeng, Xiaohua & Zhang, Xuanming & Qian, Qifeng & Yang, DongPo, 2024. "Feedback-linearization decoupling based coordinated control of air supply and thermal management for vehicular fuel cell system," Energy, Elsevier, vol. 305(C).
    17. Zhang, Dongfang & Sun, Wei & Zou, Yuan & Zhang, Xudong & Zhang, Yiwei, 2024. "An improved soft actor-critic-based energy management strategy of heavy-duty hybrid electric vehicles with dual-engine system," Energy, Elsevier, vol. 308(C).
    18. Li, Jianwei & Zou, Weitao & Yang, Qingqing & Yao, Fang & Zhu, Jin, 2024. "EV charging fairness protective management against charging demand uncertainty for a new “1 to N” automatic charging pile," Energy, Elsevier, vol. 306(C).
    19. Fengyan Yi & Wei Guo & Hongtao Gong & Yang Shen & Jiaming Zhou & Wenhao Yu & Dagang Lu & Chunchun Jia & Caizhi Zhang & Farui Gong, 2024. "Research on Speed Planning and Energy Management Strategy for Fuel Cell Hybrid Bus in Green Wave Scenarios at Traffic Light Intersections Based on Deep Reinforcement Learning," Sustainability, MDPI, vol. 16(24), pages 1-15, December.
    20. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2312-:d:1647775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.