IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225002208.html
   My bibliography  Save this article

State of health estimation of lithium-ion batteries based on feature optimization and data-driven models

Author

Listed:
  • Mu, Guixiang
  • Wei, Qingguo
  • Xu, Yonghong
  • Li, Jian
  • Zhang, Hongguang
  • Yang, Fubin
  • Zhang, Jian
  • Li, Qi

Abstract

With the widespread application of lithium-ion batteries in electric vehicles, accurately estimating their state of health (SOH) has become a key focus of research. This paper explores various feature optimization methods and data-driven models with different structures, and constructs various SOH estimation models suitable for lithium-ion batteries. Based on battery testing data, multiple features are extracted from voltage and temperature to characterize the battery aging process. To reduce information redundancy among features, filtering methods, Principal Component Analysis (PCA), and Multi-dimensional Scaling (MDS) are applied for optimization, aiming to maximize feature information utilization. This paper compares four common and structurally different data-driven models: linear regression (LR), Gaussian process regression (GPR), support vector regression (SVR), and long short-term memory (LSTM) networks. The effectiveness of each model is validated using multi-feature inputs, and a multi-dimensional assessment of feature selection and data-driven model performance in SOH estimation is conducted, the average absolute error of all models under 60 % training set conditions is 0.8 %. The average absolute error of estimating the four batteries using the fused PCA features as input and the GPR model is less than 1.2 %. At the same time, using the optimized features as input reduces the average training time by 46.63 % compared to using multiple features as input. In summary, the combination of PCA features and GPR models has good performance in both estimation accuracy and computational efficiency for different batteries.

Suggested Citation

  • Mu, Guixiang & Wei, Qingguo & Xu, Yonghong & Li, Jian & Zhang, Hongguang & Yang, Fubin & Zhang, Jian & Li, Qi, 2025. "State of health estimation of lithium-ion batteries based on feature optimization and data-driven models," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002208
    DOI: 10.1016/j.energy.2025.134578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Jing & Fan, Chaoqun & Yan, Huiyi, 2024. "SOH estimation of lithium-ion batteries based on multi-feature deep fusion and XGBoost," Energy, Elsevier, vol. 306(C).
    2. Peng, Simin & Chen, Shengdong & Liu, Yong & Yu, Quanqing & Kan, Jiarong & Li, Rui, 2025. "State of power prediction joint fisher optimal segmentation and PO-BP neural network for a parallel battery pack considering cell inconsistency," Applied Energy, Elsevier, vol. 381(C).
    3. Peng, Simin & Miao, Yifan & Xiong, Rui & Bai, Jiawei & Cheng, Mengzeng & Pecht, Michael, 2024. "State of charge estimation for a parallel battery pack jointly by fuzzy-PI model regulator and adaptive unscented Kalman filter," Applied Energy, Elsevier, vol. 360(C).
    4. Qiao, Jialu & Wang, Shunli & Yu, Chunmei & Yang, Xiao & Fernandez, Carlos, 2023. "A chaotic firefly - Particle filtering method of dynamic migration modeling for the state-of-charge and state-of-health co-estimation of a lithium-ion battery performance," Energy, Elsevier, vol. 263(PE).
    5. Wu, Muyao & Zhong, Yiming & Wu, Ji & Wang, Yuqing & Wang, Li, 2023. "State of health estimation of the lithium-ion power battery based on the principal component analysis-particle swarm optimization-back propagation neural network," Energy, Elsevier, vol. 283(C).
    6. Zhu, Tao & Wang, Shunli & Fan, Yongcun & Hai, Nan & Huang, Qi & Fernandez, Carlos, 2024. "An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition," Energy, Elsevier, vol. 306(C).
    7. Lin, Mingqiang & Yan, Chenhao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2022. "Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression," Energy, Elsevier, vol. 250(C).
    8. Mu, Guixiang & Wei, Qingguo & Xu, Yonghong & Zhang, Hongguang & Zhang, Jian & Li, Qi, 2024. "Capacity estimation for lithium-ion batteries based on heterogeneous stacking model with feature fusion," Energy, Elsevier, vol. 313(C).
    9. Ma, Yan & Shan, Ce & Gao, Jinwu & Chen, Hong, 2022. "A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction," Energy, Elsevier, vol. 251(C).
    10. Xie, Jiale & Xu, Jingfan & Wei, Zhongbao & Li, Xiaoyu, 2023. "Fault isolating and grading for li-ion battery packs based on pseudo images and convolutional neural network," Energy, Elsevier, vol. 263(PD).
    11. Lin, Mingqiang & Wu, Denggao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "Health prognosis for lithium-ion battery with multi-feature optimization," Energy, Elsevier, vol. 264(C).
    12. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    13. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Yuan, Caichenran & Cang, Junjie & Zhang, Kai & Pecht, Michael, 2024. "Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model," Energy, Elsevier, vol. 298(C).
    14. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Tang, Aihua & Kan, Jiarong & Pecht, Michael, 2024. "SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion," Energy, Elsevier, vol. 308(C).
    15. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    16. Peng, Simin & Zhang, Daohan & Dai, Guohong & Wang, Lin & Jiang, Yuxia & Zhou, Feng, 2025. "State of charge estimation for LiFePO4 batteries joint by PID observer and improved EKF in various OCV ranges," Applied Energy, Elsevier, vol. 377(PA).
    17. Peng, Simin & Sun, Yunxiang & Liu, Dandan & Yu, Quanqing & Kan, Jiarong & Pecht, Michael, 2023. "State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network," Energy, Elsevier, vol. 282(C).
    18. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Lin, Wei-Jen & Chen, Kuo-Ching, 2022. "Evolution of parameters in the Doyle-Fuller-Newman model of cycling lithium ion batteries by multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yang & Gao, Guoqiang & Chen, Kui & He, Shuhang & Liu, Kai & Xin, Dongli & Luo, Yang & Long, Zhou & Wu, Guangning, 2025. "State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model," Energy, Elsevier, vol. 319(C).
    2. Chenyuan Liu & Heng Li & Kexin Li & Yue Wu & Baogang Lv, 2025. "Deep Learning for State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles: A Systematic Review," Energies, MDPI, vol. 18(6), pages 1-20, March.
    3. Zhiwen Zhang & Jie Tang & Jiyuan Zhang & Tianyu Li & Hao Chen, 2025. "Research on Online Energy Management Strategy for Hybrid Energy Storage Electric Vehicles Under Adaptive Cruising Conditions," Sustainability, MDPI, vol. 17(7), pages 1-28, April.
    4. Jingrui Liu & Zhiwen Hou & Bowei Liu & Xinhui Zhou, 2025. "Mathematical and Machine Learning Innovations for Power Systems: Predicting Transformer Oil Temperature with Beluga Whale Optimization-Based Hybrid Neural Networks," Mathematics, MDPI, vol. 13(11), pages 1-34, May.
    5. Liu, Wei & Teh, Jiashen & Alharbi, Bader, 2025. "An asynchronous electro-thermal coupling modeling method of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Simin & Wang, Yujian & Tang, Aihua & Jiang, Yuxia & Kan, Jiarong & Pecht, Michael, 2025. "State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries," Energy, Elsevier, vol. 315(C).
    2. Li, Yang & Gao, Guoqiang & Chen, Kui & He, Shuhang & Liu, Kai & Xin, Dongli & Luo, Yang & Long, Zhou & Wu, Guangning, 2025. "State-of-health prediction of lithium-ion batteries using feature fusion and a hybrid neural network model," Energy, Elsevier, vol. 319(C).
    3. Tao, Junjie & Wang, Shunli & Cao, Wen & Cui, Yixiu & Fernandez, Carlos & Guerrero, Josep M., 2024. "Innovative multiscale fusion – Antinoise extended long short-term memory neural network modeling for high precision state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 312(C).
    4. Mu, Guixiang & Wei, Qingguo & Xu, Yonghong & Zhang, Hongguang & Zhang, Jian & Li, Qi, 2024. "Capacity estimation for lithium-ion batteries based on heterogeneous stacking model with feature fusion," Energy, Elsevier, vol. 313(C).
    5. Sun, Jing & Wang, Haitao, 2025. "State of health estimation for lithium-ion batteries based on optimal feature subset algorithm," Energy, Elsevier, vol. 322(C).
    6. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Tang, Aihua & Kan, Jiarong & Pecht, Michael, 2024. "SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion," Energy, Elsevier, vol. 308(C).
    7. Ni, Yulong & Song, Kai & Pei, Lei & Li, Xiaoyu & Wang, Tiansi & Zhang, He & Zhu, Chunbo & Xu, Jianing, 2025. "State-of-health estimation and knee point identification of lithium-ion battery based on data-driven and mechanism model," Applied Energy, Elsevier, vol. 385(C).
    8. Peng, Simin & Chen, Shengdong & Liu, Yong & Yu, Quanqing & Kan, Jiarong & Li, Rui, 2025. "State of power prediction joint fisher optimal segmentation and PO-BP neural network for a parallel battery pack considering cell inconsistency," Applied Energy, Elsevier, vol. 381(C).
    9. Wang, Shunli & Wu, Yingyang & Zhou, Heng & Zhang, Qin & Fernandez, Carlos & Blaabjerg, Frede, 2025. "Improved particle swarm optimization-adaptive dual extended Kalman filtering for accurate battery state of charge and state of energy joint estimation with efficient core factor feedback correction," Energy, Elsevier, vol. 322(C).
    10. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    11. Chen, Yuan & Duan, Wenxian & Huang, Xiaohe & Wang, Shunli, 2024. "Multi-output fusion SOC and SOE estimation algorithm based on deep network migration," Energy, Elsevier, vol. 308(C).
    12. Tao, Junjie & Wang, Shunli & Cao, Wen & Fernandez, Carlos & Blaabjerg, Frede & Cheng, Liangwei, 2025. "An innovative multitask learning - Long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current condi," Energy, Elsevier, vol. 314(C).
    13. Peng, Simin & Zhang, Daohan & Dai, Guohong & Wang, Lin & Jiang, Yuxia & Zhou, Feng, 2025. "State of charge estimation for LiFePO4 batteries joint by PID observer and improved EKF in various OCV ranges," Applied Energy, Elsevier, vol. 377(PA).
    14. Wang, Zhenxi & Ma, Yan & Gao, Jinwu & Chen, Hong, 2025. "Remaining useful life prediction for solid-state lithium batteries based on spatial–temporal relations and neuronal ODE-assisted KAN," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    15. Zhao, Haichuan & Meng, Jinhao & Peng, Qiao, 2025. "Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning," Applied Energy, Elsevier, vol. 381(C).
    16. Huang, Kai & Yao, Kaixin & Guo, Yongfang & Lv, Ziteng, 2023. "State of health estimation of lithium-ion batteries based on fine-tuning or rebuilding transfer learning strategies combined with new features mining," Energy, Elsevier, vol. 282(C).
    17. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    18. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    19. Chu, Yunkun & Cui, Naxin & Liu, Kailong, 2025. "Nonlinear modeling and SOC estimation of lithium-ion batteries based on block-oriented structures," Energy, Elsevier, vol. 315(C).
    20. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.