IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025984.html
   My bibliography  Save this article

Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning

Author

Listed:
  • Zhao, Haichuan
  • Meng, Jinhao
  • Peng, Qiao

Abstract

Capturing the degradation path of lithium-ion battery (LIB) at the early stage is critical to managing the whole lifespan of the battery energy storage systems (BESS), while recent research mainly focuses on the short-term battery health diagnosis such as state of health (SOH). This work investigates an innovative concept to perceive the degradation trajectory of the LIBs with few initial cycles, where sufficient tuning space can be left for the sophisticated operation and maintenance of BESS. A novel deep learning framework is proposed to obtain capacity degradation trajectory using graphical features constructed with the early battery usage data. To capture richer capacity decay features, the framework enhances the voltage-capacity data by generating incremental capacity (IC) and capacity difference curves, which are then spliced to construct graphical features. A multi-channel dependent neural network (MCDNet) is developed to extract degradation information from graphical features and predict key trajectory knots using a large-size convolutional kernel and STar Aggregate-Redistribute (STAR) feature fusion method to ensure the advantage of channel independence while facilitating the interaction of channel information. The capacity degradation trajectory will be reconstructed with the key knots using the piecewise cubic Hermite interpolating polynomial (PCHIP). The proposed model is validated against advanced image classification algorithms and its performance is tested under different battery lifetime scenarios, limited cycling data, and different voltage segments. In most cases, the proposed method obtains the capacity degradation trajectories with the mean absolute error of less than 60 cycles.

Suggested Citation

  • Zhao, Haichuan & Meng, Jinhao & Peng, Qiao, 2025. "Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025984
    DOI: 10.1016/j.apenergy.2024.125214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Jinhao & You, Yuqiang & Lin, Mingqiang & Wu, Ji & Song, Zhengxiang, 2024. "Multi-scenarios transferable learning framework with few-shot for early lithium-ion battery lifespan trajectory prediction," Energy, Elsevier, vol. 286(C).
    2. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    3. He, Ning & Wang, Qiqi & Lu, Zhenfeng & Chai, Yike & Yang, Fangfang, 2024. "Early prediction of battery lifetime based on graphical features and convolutional neural networks," Applied Energy, Elsevier, vol. 353(PA).
    4. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Yuan, Caichenran & Cang, Junjie & Zhang, Kai & Pecht, Michael, 2024. "Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model," Energy, Elsevier, vol. 298(C).
    5. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Tang, Aihua & Kan, Jiarong & Pecht, Michael, 2024. "SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion," Energy, Elsevier, vol. 308(C).
    6. Peng, Simin & Zhang, Daohan & Dai, Guohong & Wang, Lin & Jiang, Yuxia & Zhou, Feng, 2025. "State of charge estimation for LiFePO4 batteries joint by PID observer and improved EKF in various OCV ranges," Applied Energy, Elsevier, vol. 377(PA).
    7. Sohn, Suyeon & Byun, Ha-Eun & Lee, Jay H., 2022. "Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation," Applied Energy, Elsevier, vol. 328(C).
    8. Wenwei Wang & Shuaibang Liu & Xiao-Ying Ma & Jiuchun Jiang & Xiao-Guang Yang, 2024. "Advancing Smart Lithium-Ion Batteries: A Review on Multi-Physical Sensing Technologies for Lithium-Ion Batteries," Energies, MDPI, vol. 17(10), pages 1-15, May.
    9. Solmaz Nazaralizadeh & Paramarshi Banerjee & Anurag K. Srivastava & Parviz Famouri, 2024. "Battery Energy Storage Systems: A Review of Energy Management Systems and Health Metrics," Energies, MDPI, vol. 17(5), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Simin & Wang, Yujian & Tang, Aihua & Jiang, Yuxia & Kan, Jiarong & Pecht, Michael, 2025. "State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries," Energy, Elsevier, vol. 315(C).
    2. Tao, Junjie & Wang, Shunli & Cao, Wen & Fernandez, Carlos & Blaabjerg, Frede & Cheng, Liangwei, 2025. "An innovative multitask learning - Long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current condi," Energy, Elsevier, vol. 314(C).
    3. Tao, Junjie & Wang, Shunli & Cao, Wen & Cui, Yixiu & Fernandez, Carlos & Guerrero, Josep M., 2024. "Innovative multiscale fusion – Antinoise extended long short-term memory neural network modeling for high precision state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 312(C).
    4. Mu, Guixiang & Wei, Qingguo & Xu, Yonghong & Li, Jian & Zhang, Hongguang & Yang, Fubin & Zhang, Jian & Li, Qi, 2025. "State of health estimation of lithium-ion batteries based on feature optimization and data-driven models," Energy, Elsevier, vol. 316(C).
    5. Peng, Simin & Chen, Shengdong & Liu, Yong & Yu, Quanqing & Kan, Jiarong & Li, Rui, 2025. "State of power prediction joint fisher optimal segmentation and PO-BP neural network for a parallel battery pack considering cell inconsistency," Applied Energy, Elsevier, vol. 381(C).
    6. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    7. Jin, Haiyan & Ru, Rui & Cai, Lei & Meng, Jinhao & Wang, Bin & Peng, Jichang & Yang, Shengxiang, 2025. "A synthetic data generation method and evolutionary transformer model for degradation trajectory prediction in lithium-ion batteries," Applied Energy, Elsevier, vol. 377(PD).
    8. Ji, Shanling & Zhang, Zhisheng & Stein, Helge S. & Zhu, Jianxiong, 2025. "Flexible health prognosis of battery nonlinear aging using temporal transfer learning," Applied Energy, Elsevier, vol. 377(PD).
    9. Jiang, Lidang & Li, Zhuoxiang & Hu, Changyan & Chen, Junxiong & Huang, Qingsong & He, Ge, 2024. "A robust adapted Flexible Parallel Neural Network architecture for early prediction of lithium battery lifespan," Energy, Elsevier, vol. 308(C).
    10. Ye, Jinhua & Xie, Quan & Lin, Mingqiang & Wu, Ji, 2024. "A method for estimating the state of health of lithium-ion batteries based on physics-informed neural network," Energy, Elsevier, vol. 294(C).
    11. Wang, Cong & Chen, Yunxia, 2024. "Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery," Applied Energy, Elsevier, vol. 365(C).
    12. Che, Yunhong & Zheng, Yusheng & Forest, Florent Evariste & Sui, Xin & Hu, Xiaosong & Teodorescu, Remus, 2024. "Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2024. "An adaptive and interpretable SOH estimation method for lithium-ion batteries based-on relaxation voltage cross-scale features and multi-LSTM-RFR2," Energy, Elsevier, vol. 304(C).
    14. Lee, Jaewook & Lee, Jay H., 2024. "Simultaneous extraction of intra- and inter-cycle features for predicting lithium-ion battery's knees using convolutional and recurrent neural networks," Applied Energy, Elsevier, vol. 356(C).
    15. Fan, Wenjun & Zhu, Jiangong & Qiao, Dongdong & Jiang, Bo & Wang, Xueyuan & Wei, Xuezhe & Dai, Haifeng, 2024. "Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage," Energy, Elsevier, vol. 294(C).
    16. Jiang, Lidang & Hu, Changyan & Ji, Sibei & Zhao, Hang & Chen, Junxiong & He, Ge, 2025. "Generating comprehensive lithium battery charging data with generative AI," Applied Energy, Elsevier, vol. 377(PC).
    17. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    18. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    19. Ibraheem, Rasheed & Dechent, Philipp & dos Reis, Gonçalo, 2025. "Path signature-based life prognostics of Li-ion battery using pulse test data," Applied Energy, Elsevier, vol. 378(PA).
    20. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.