IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025145.html
   My bibliography  Save this article

State of power prediction joint fisher optimal segmentation and PO-BP neural network for a parallel battery pack considering cell inconsistency

Author

Listed:
  • Peng, Simin
  • Chen, Shengdong
  • Liu, Yong
  • Yu, Quanqing
  • Kan, Jiarong
  • Li, Rui

Abstract

Accurate state of power (SOP) of battery is critical for efficient control and stable operation of electric vehicles. Due to cell inconsistency and even varying degrees of discrepancy, especially, for the cells with large inconsistencies, accurately predicting SOP for a parallel battery pack faces challenges. To resolve these problems, a SOP prediction method joint Fisher optimal segmentation (FOS) and parrot optimizer-back propagation (PO-BP) neural network is developed. First, a quantitative differentiation strategy of the cell inconsistency based on weighted cosine similarity (WCS) is presented, which can describe the variation of cell similarity coefficient with maximum current deviation in parallel branch. Secondly, according to similarity coefficient and current deviation of the cells, a determination method using FOS for the degree of cell inconsistency is developed to identify cells with large inconsistencies. Finally, a power corrector based on the PO-BP neural network is developed to compensate for the SOP differences caused by the cells with large inconsistencies, thereby improving the SOP prediction accuracy. The experimental results verify the effectiveness of the developed method under various dynamic conditions, with a decrease of approximately 60 % in both the mean absolute error and the root mean square error of the SOP for a parallel battery pack.

Suggested Citation

  • Peng, Simin & Chen, Shengdong & Liu, Yong & Yu, Quanqing & Kan, Jiarong & Li, Rui, 2025. "State of power prediction joint fisher optimal segmentation and PO-BP neural network for a parallel battery pack considering cell inconsistency," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025145
    DOI: 10.1016/j.apenergy.2024.125130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xu & Wang, Yujie & Wu, Ji & Chen, Zonghai, 2018. "A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter," Applied Energy, Elsevier, vol. 216(C), pages 442-451.
    2. Bo Jiang & Haifeng Dai & Xuezhe Wei & Letao Zhu & Zechang Sun, 2017. "Online Reliable Peak Charge/Discharge Power Estimation of Series-Connected Lithium-Ion Battery Packs," Energies, MDPI, vol. 10(3), pages 1-22, March.
    3. Peng, Simin & Miao, Yifan & Xiong, Rui & Bai, Jiawei & Cheng, Mengzeng & Pecht, Michael, 2024. "State of charge estimation for a parallel battery pack jointly by fuzzy-PI model regulator and adaptive unscented Kalman filter," Applied Energy, Elsevier, vol. 360(C).
    4. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation," Energy, Elsevier, vol. 207(C).
    5. Yu, Quanqing & Nie, Yuwei & Peng, Simin & Miao, Yifan & Zhai, Chengzhi & Zhang, Runfeng & Han, Jinsong & Zhao, Shuo & Pecht, Michael, 2023. "Evaluation of the safety standards system of power batteries for electric vehicles in China," Applied Energy, Elsevier, vol. 349(C).
    6. Tian, Jiaqiang & Wang, Yujie & Liu, Chang & Chen, Zonghai, 2020. "Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles," Energy, Elsevier, vol. 194(C).
    7. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Tang, Aihua & Kan, Jiarong & Pecht, Michael, 2024. "SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion," Energy, Elsevier, vol. 308(C).
    8. Peng, Simin & Zhang, Daohan & Dai, Guohong & Wang, Lin & Jiang, Yuxia & Zhou, Feng, 2025. "State of charge estimation for LiFePO4 batteries joint by PID observer and improved EKF in various OCV ranges," Applied Energy, Elsevier, vol. 377(PA).
    9. Zhang, Jie & Xiao, Bo & Niu, Geng & Xie, Xuanzhi & Wu, Saixiang, 2024. "Joint estimation of state-of-charge and state-of-power for hybrid supercapacitors using fractional-order adaptive unscented Kalman filter," Energy, Elsevier, vol. 294(C).
    10. Guo, Ruohan & Shen, Weixiang, 2022. "A data-model fusion method for online state of power estimation of lithium-ion batteries at high discharge rate in electric vehicles," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mu, Guixiang & Wei, Qingguo & Xu, Yonghong & Li, Jian & Zhang, Hongguang & Yang, Fubin & Zhang, Jian & Li, Qi, 2025. "State of health estimation of lithium-ion batteries based on feature optimization and data-driven models," Energy, Elsevier, vol. 316(C).
    2. Peng, Simin & Wang, Yujian & Tang, Aihua & Jiang, Yuxia & Kan, Jiarong & Pecht, Michael, 2025. "State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries," Energy, Elsevier, vol. 315(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Simin & Wang, Yujian & Tang, Aihua & Jiang, Yuxia & Kan, Jiarong & Pecht, Michael, 2025. "State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries," Energy, Elsevier, vol. 315(C).
    2. Mu, Guixiang & Wei, Qingguo & Xu, Yonghong & Li, Jian & Zhang, Hongguang & Yang, Fubin & Zhang, Jian & Li, Qi, 2025. "State of health estimation of lithium-ion batteries based on feature optimization and data-driven models," Energy, Elsevier, vol. 316(C).
    3. Qi, Kaijian & Zhang, Weigang & Zhou, Wei & Cheng, Jifu, 2022. "Integrated battery power capability prediction and driving torque regulation for electric vehicles: A reduced order MPC approach," Applied Energy, Elsevier, vol. 317(C).
    4. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    5. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Yuan, Caichenran & Cang, Junjie & Zhang, Kai & Pecht, Michael, 2024. "Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model," Energy, Elsevier, vol. 298(C).
    7. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    8. Tao, Junjie & Wang, Shunli & Cao, Wen & Fernandez, Carlos & Blaabjerg, Frede & Cheng, Liangwei, 2025. "An innovative multitask learning - Long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current condi," Energy, Elsevier, vol. 314(C).
    9. Tao, Junjie & Wang, Shunli & Cao, Wen & Cui, Yixiu & Fernandez, Carlos & Guerrero, Josep M., 2024. "Innovative multiscale fusion – Antinoise extended long short-term memory neural network modeling for high precision state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 312(C).
    10. Tang, Zhongyi & Zhang, Zhirong & Shen, Xianxian & Zhong, Anjie & Nazir, Muhammad Shahzad & Peng, Tian & Zhang, Chu, 2024. "Evolutionary hybrid deep learning based on feature engineering and deep projection encoded echo-state network for lithium batteries state of health estimation," Energy, Elsevier, vol. 313(C).
    11. Zhao, Haichuan & Meng, Jinhao & Peng, Qiao, 2025. "Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning," Applied Energy, Elsevier, vol. 381(C).
    12. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    13. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    14. Meilin Gong & Jiatao Chen & Jianming Chen & Xiaohuan Zhao, 2024. "Study on Discharge Characteristic Performance of New Energy Electric Vehicle Batteries in Teaching Experiments of Safety Simulation under Different Operating Conditions," Energies, MDPI, vol. 17(12), pages 1-14, June.
    15. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    16. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    18. Xu, Bowen & Lu, Xinjiang & Bai, Yunxu & Xu, Jie, 2024. "A convolution and memory network-based spatiotemporal model for thermal dynamics of multiple heat sources and its application in serial-connected lithium batteries," Energy, Elsevier, vol. 293(C).
    19. Chu, Yunkun & Cui, Naxin & Liu, Kailong, 2025. "Nonlinear modeling and SOC estimation of lithium-ion batteries based on block-oriented structures," Energy, Elsevier, vol. 315(C).
    20. Hu, Dunan & Huang, Sheng & Wen, Zhen & Gu, Xiuquan & Lu, Jianguo, 2024. "A review on thermal runaway warning technology for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.