IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925008311.html
   My bibliography  Save this article

Slight overdischarge cycling-induced severe degradation of electrochemical and mechanical properties of lithium-ion batteries

Author

Listed:
  • Guo, Zixin
  • Zhao, Wenyang
  • Ma, Zhichao
  • Wang, Shenghui
  • Liu, Jiong
  • Zhao, Hongwei
  • Ren, Luquan

Abstract

Overdischarge as a typical electrical abuse condition is most likely to be encountered in the practical use of electric vehicles (EVs) and grid storage, which has a great impact on the safety of lithium-ion batteries (LIBs). In this study, the short-term slight overdischarge cycles are focused on, and the impact of overdischarge on battery performance degradation is analyzed by multiple methods including electrochemical analysis and structural characterization. Mechanical tests of the disassembled battery components are carried out. The results indicate that overdischarge causes more significant damage to the cathode. With the progression of the overdischarge cycle, the cathode active particles undergo damage and detachment. The dramatic changes in morphology and structure directly lead to increased impedance, a substantial decrease in reversible capacity, and a significant decline in mechanical properties. Additionally, the loss of lithium inventory and the degradation of the separator's performance cannot be overlooked. The changes not only greatly shorten battery service life but also increase the hidden danger of battery safety.

Suggested Citation

  • Guo, Zixin & Zhao, Wenyang & Ma, Zhichao & Wang, Shenghui & Liu, Jiong & Zhao, Hongwei & Ren, Luquan, 2025. "Slight overdischarge cycling-induced severe degradation of electrochemical and mechanical properties of lithium-ion batteries," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008311
    DOI: 10.1016/j.apenergy.2025.126101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925008311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.