IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3503-d1693453.html
   My bibliography  Save this article

Predicting the Evolution of Capacity Degradation Histograms of Rechargeable Batteries Under Dynamic Loads via Latent Gaussian Processes

Author

Listed:
  • Daocan Wang

    (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
    China North Vehicle Research Institute, Beijing 100072, China)

  • Xinggang Li

    (China North Vehicle Research Institute, Beijing 100072, China)

  • Jiahuan Lu

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

Abstract

Accurate prediction of lithium-ion battery capacity degradation under dynamic loads is crucial yet challenging due to limited data availability and high cell-to-cell variability. This study proposes a Latent Gaussian Process (GP) model to forecast the full distribution of capacity fade in the form of high-dimensional histograms, rather than relying on point estimates. The model integrates Principal Component Analysis with GP regression to learn temporal degradation patterns from partial early-cycle data of a target cell, using a fully degraded reference cell. Experiments on the NASA dataset with randomized dynamic load profiles demonstrate that Latent GP enables full-lifecycle capacity distribution prediction using only early-cycle observations. Compared with standard GP, long short-term memory (LSTM), and Monte Carlo Dropout LSTM baselines, it achieves superior accuracy in terms of Kullback–Leibler divergence and mean squared error. Sensitivity analyses further confirm the model’s robustness to input noise and hyperparameter settings, highlighting its potential for practical deployment in real-world battery health prognostics.

Suggested Citation

  • Daocan Wang & Xinggang Li & Jiahuan Lu, 2025. "Predicting the Evolution of Capacity Degradation Histograms of Rechargeable Batteries Under Dynamic Loads via Latent Gaussian Processes," Energies, MDPI, vol. 18(13), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3503-:d:1693453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Two-stage prediction method for capacity aging trajectories of lithium-ion batteries based on Siamese-convolutional neural network," Energy, Elsevier, vol. 295(C).
    2. Huang, Yaodi & Zhang, Pengcheng & Lu, Jiahuan & Xiong, Rui & Cai, Zhongmin, 2024. "A transferable long-term lithium-ion battery aging trajectory prediction model considering internal resistance and capacity regeneration phenomenon," Applied Energy, Elsevier, vol. 360(C).
    3. Zafar, Muhammad Hamza & Mansoor, Majad & Abou Houran, Mohamad & Khan, Noman Mujeeb & Khan, Kamran & Raza Moosavi, Syed Kumayl & Sanfilippo, Filippo, 2023. "Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles," Energy, Elsevier, vol. 282(C).
    4. Li, Wei & Li, Yongsheng & Garg, Akhil & Gao, Liang, 2024. "Enhancing real-time degradation prediction of lithium-ion battery: A digital twin framework with CNN-LSTM-attention model," Energy, Elsevier, vol. 286(C).
    5. Adhikari, Niroj & Bhandari, Ramesh & Joshi, Prajwol, 2024. "Thermal analysis of lithium-ion battery of electric vehicle using different cooling medium," Applied Energy, Elsevier, vol. 360(C).
    6. Zhao, Haichuan & Meng, Jinhao & Peng, Qiao, 2025. "Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning," Applied Energy, Elsevier, vol. 381(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. Wang, Ying & Li, Hongmin & Jahanger, Atif & Li, Qiwei & Wang, Biao & Balsalobre-Lorente, Daniel, 2024. "A novel ensemble electricity load forecasting system based on a decomposition-selection-optimization strategy," Energy, Elsevier, vol. 312(C).
    3. Zhang, Huan & Liu, Tao & Liu, Wang & Zhou, Jianzhao & Zhang, Quanguo & Ren, Jingzheng, 2025. "An interpretable deep learning framework for photofermentation biological hydrogen production and process optimization," Energy, Elsevier, vol. 322(C).
    4. Jin, Haiyan & Ru, Rui & Cai, Lei & Meng, Jinhao & Wang, Bin & Peng, Jichang & Yang, Shengxiang, 2025. "A synthetic data generation method and evolutionary transformer model for degradation trajectory prediction in lithium-ion batteries," Applied Energy, Elsevier, vol. 377(PD).
    5. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    6. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    7. Muhammed Cavus & Dilum Dissanayake & Margaret Bell, 2025. "Next Generation of Electric Vehicles: AI-Driven Approaches for Predictive Maintenance and Battery Management," Energies, MDPI, vol. 18(5), pages 1-41, February.
    8. Ayşe Tuğba Yapıcı & Nurettin Abut & Tarık Erfidan, 2025. "Comparing the Effectiveness of Deep Learning Approaches for Charging Time Prediction in Electric Vehicles: Kocaeli Example," Energies, MDPI, vol. 18(8), pages 1-21, April.
    9. An, Zhiguo & Liu, Huaixi & Gao, Weilin & Zhang, Jianping, 2024. "A triple-hybrid battery thermal management system with drop-shaped fin channels for improving weather tolerance," Energy, Elsevier, vol. 307(C).
    10. Chen, Zhen & Wang, Zirong & Wu, Wei & Xia, Tangbin & Pan, Ershun, 2024. "A hybrid battery degradation model combining arrhenius equation and neural network for capacity prediction under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    11. Huang, Xiaojia & Wang, Chen & Zhang, Shenghui, 2024. "Research and application of a Model selection forecasting system for wind speed and theoretical power generation in wind farms based on classification and wind conversion," Energy, Elsevier, vol. 293(C).
    12. Laeeq Aslam & Runmin Zou & Ebrahim Shahzad Awan & Sayyed Shahid Hussain & Kashish Ara Shakil & Mudasir Ahmad Wani & Muhammad Asim, 2025. "Hardware-Centric Exploration of the Discrete Design Space in Transformer–LSTM Models for Wind Speed Prediction on Memory-Constrained Devices," Energies, MDPI, vol. 18(9), pages 1-21, April.
    13. Hu, Lipeng & Tang, Jinjun & Xu, Fuqiao & Liang, Xiao, 2025. "SOC prediction for electric buses based on interpretable transformer model: Impact of traffic conditions and feature importance," Energy, Elsevier, vol. 324(C).
    14. Zhu, Guangyao & Hu, Minghui & Qiu, Chengyang & Deng, Kejun, 2025. "Integer variable-order equivalent circuit model and switching strategy for lithium-ion power batteries for vehicles based on information criterion under dynamic and static working conditions," Energy, Elsevier, vol. 322(C).
    15. Zhao, Zhihui & Kou, Farong & Pan, Zhengniu & Chen, Leiming & Yang, Tianxiang, 2024. "Ultra-high-accuracy state-of-charge fusion estimation of lithium-ion batteries using variational mode decomposition," Energy, Elsevier, vol. 309(C).
    16. Wang, Ningbo & Guo, Yanhua & Huang, Congqi & Tian, Bo & Shao, Shuangquan, 2025. "Multi-scale collaborative modeling and deep learning-based thermal prediction for air-cooled data centers: An innovative insight for thermal management," Applied Energy, Elsevier, vol. 377(PB).
    17. Yifan, Zheng & Sida, Zhou & Zhengjie, Zhang & Xinan, Zhou & Rui, Cao & Qiangwei, Li & Zichao, Gao & Chengcheng, Fan & Shichun, Yang, 2024. "A capacity fade reliability model for lithium-ion battery packs based on real-vehicle data," Energy, Elsevier, vol. 307(C).
    18. Chen, Laien & Zeng, Xiaoyong & Xia, Xiangyang & Sun, Yaoke & Yue, Jiahui, 2024. "A modeling and state of charge estimation approach to lithium-ion batteries based on the state-dependent autoregressive model with exogenous inputs," Energy, Elsevier, vol. 300(C).
    19. Sun, Yang & Tian, Zhirui, 2025. "Solving few-shot problem in wind speed prediction: A novel transfer strategy based on decomposition and learning ensemble," Applied Energy, Elsevier, vol. 377(PD).
    20. Hou, Jing & Su, Taian & Gao, Tian & Yang, Yan & Xue, Wei, 2025. "Early prediction of battery lifetime for lithium-ion batteries based on a hybrid clustered CNN model," Energy, Elsevier, vol. 319(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3503-:d:1693453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.