IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2153-d1640152.html
   My bibliography  Save this article

Hardware-Centric Exploration of the Discrete Design Space in Transformer–LSTM Models for Wind Speed Prediction on Memory-Constrained Devices

Author

Listed:
  • Laeeq Aslam

    (School of Automation, Central South University, Changsha 410083, China)

  • Runmin Zou

    (School of Automation, Central South University, Changsha 410083, China)

  • Ebrahim Shahzad Awan

    (School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2747, Australia)

  • Sayyed Shahid Hussain

    (School of Automation, Central South University, Changsha 410083, China)

  • Kashish Ara Shakil

    (Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Mudasir Ahmad Wani

    (EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia)

  • Muhammad Asim

    (EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
    School of Electronic Information, Central South University, Changsha 410083, China)

Abstract

Wind is one of the most important resources in the renewable energy basket. However, there are questions regarding wind as a sustainable solution, especially concerning its upfront costs, visual impact, noise pollution, and bird collisions. These challenges arise in commercial windmills, whereas for domestic small-scale windmills, these challenges are limited. On the other hand, accurate wind speed prediction (WSP) is crucial for optimizing power management in renewable energy systems. Existing research focuses on proposing model architectures and optimizing hyperparameters to improve model performance. This approach often results in larger models, which are hosted on cloud servers. Such models face challenges, including bandwidth utilization leading to data delays, increased costs, security risks, concerns about data privacy, and the necessity of continuous internet connectivity. Such resources are not available for domestic windmills. To overcome these obstacles, this work proposes a transformer model integrated with Long Short-Term Memory (LSTM) units, optimized for memory-constrained devices (MCDs). A contribution of this research is the development of a novel cost function that balances the reduction of mean squared error with the constraints of model size. This approach enables model deployment on low-power devices, avoiding the challenges of cloud-based deployment. The model, with its tuned hyperparameters, outperforms recent methodologies in terms of mean squared error, mean absolute error, model size, and R-squared scores across three different datasets. This advancement paves the way for more dynamic and secure on-device wind speed prediction (WSP) applications, representing a step forward in renewable energy management.

Suggested Citation

  • Laeeq Aslam & Runmin Zou & Ebrahim Shahzad Awan & Sayyed Shahid Hussain & Kashish Ara Shakil & Mudasir Ahmad Wani & Muhammad Asim, 2025. "Hardware-Centric Exploration of the Discrete Design Space in Transformer–LSTM Models for Wind Speed Prediction on Memory-Constrained Devices," Energies, MDPI, vol. 18(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2153-:d:1640152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Wei & Li, Yongsheng & Garg, Akhil & Gao, Liang, 2024. "Enhancing real-time degradation prediction of lithium-ion battery: A digital twin framework with CNN-LSTM-attention model," Energy, Elsevier, vol. 286(C).
    2. Moreno, Sinvaldo Rodrigues & dos Santos Coelho, Leandro, 2018. "Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System," Renewable Energy, Elsevier, vol. 126(C), pages 736-754.
    3. Zhang, Yachao & Le, Jian & Liao, Xiaobing & Zheng, Feng & Li, Yinghai, 2019. "A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing," Energy, Elsevier, vol. 168(C), pages 558-572.
    4. Suo, Leiming & Peng, Tian & Song, Shihao & Zhang, Chu & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad, 2023. "Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm," Energy, Elsevier, vol. 276(C).
    5. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    6. Gkeka-Serpetsidaki, Pandora & Papadopoulos, Stylianos & Tsoutsos, Theocharis, 2022. "Assessment of the visual impact of offshore wind farms," Renewable Energy, Elsevier, vol. 190(C), pages 358-370.
    7. Mohandes, M.A. & Halawani, T.O. & Rehman, S. & Hussain, Ahmed A., 2004. "Support vector machines for wind speed prediction," Renewable Energy, Elsevier, vol. 29(6), pages 939-947.
    8. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    9. Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast," Renewable Energy, Elsevier, vol. 164(C), pages 1508-1526.
    10. Nascimento, Erick Giovani Sperandio & de Melo, Talison A.C. & Moreira, Davidson M., 2023. "A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy," Energy, Elsevier, vol. 278(C).
    11. Barter, Garrett E. & Sethuraman, Latha & Bortolotti, Pietro & Keller, Jonathan & Torrey, David A., 2023. "Beyond 15 MW: A cost of energy perspective on the next generation of drivetrain technologies for offshore wind turbines," Applied Energy, Elsevier, vol. 344(C).
    12. Zhang, Yagang & Pan, Guifang & Chen, Bing & Han, Jingyi & Zhao, Yuan & Zhang, Chenhong, 2020. "Short-term wind speed prediction model based on GA-ANN improved by VMD," Renewable Energy, Elsevier, vol. 156(C), pages 1373-1388.
    13. Pan, Shaowei & Yang, Bo & Wang, Shukai & Guo, Zhi & Wang, Lin & Liu, Jinhua & Wu, Siyu, 2023. "Oil well production prediction based on CNN-LSTM model with self-attention mechanism," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    2. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    3. Li, Yanhui & Sun, Kaixuan & Yao, Qi & Wang, Lin, 2024. "A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm," Energy, Elsevier, vol. 286(C).
    4. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    5. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    6. Wang, Jianzhou & An, Yining & Li, Zhiwu & Lu, Haiyan, 2022. "A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting," Energy, Elsevier, vol. 251(C).
    7. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    8. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    9. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
    10. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    11. Zhang, Chi & Wei, Haikun & Zhao, Junsheng & Liu, Tianhong & Zhu, Tingting & Zhang, Kanjian, 2016. "Short-term wind speed forecasting using empirical mode decomposition and feature selection," Renewable Energy, Elsevier, vol. 96(PA), pages 727-737.
    12. Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
    13. He, Jinhua & Hu, Zechun & Wang, Songpo & Mujeeb, Asad & Yang, Pengwei, 2024. "Windformer: A novel 4D high-resolution system for multi-step wind speed vector forecasting based on temporal shifted window multi-head self-attention," Energy, Elsevier, vol. 310(C).
    14. Lu, Peng & Ye, Lin & Pei, Ming & Zhao, Yongning & Dai, Binhua & Li, Zhuo, 2022. "Short-term wind power forecasting based on meteorological feature extraction and optimization strategy," Renewable Energy, Elsevier, vol. 184(C), pages 642-661.
    15. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Yang, Qibo & Hsu, Yuan-Ming & Chen, Yudi & Lee, Jay, 2019. "A combined filtering strategy for short term and long term wind speed prediction with improved accuracy," Renewable Energy, Elsevier, vol. 136(C), pages 1082-1090.
    16. Sun, Yang & Tian, Zhirui, 2025. "Solving few-shot problem in wind speed prediction: A novel transfer strategy based on decomposition and learning ensemble," Applied Energy, Elsevier, vol. 377(PD).
    17. Zhong, Mingwei & Fan, Jingmin & Luo, Jianqiang & Xiao, Xuanyi & He, Guanglin & Cai, Rui, 2024. "InfoCAVB-MemoryFormer: Forecasting of wind and photovoltaic power through the interaction of data reconstruction and data augmentation," Applied Energy, Elsevier, vol. 371(C).
    18. Méndez-Gordillo, Alma Rosa & Campos-Amezcua, Rafael & Cadenas, Erasmo, 2022. "Wind speed forecasting using a hybrid model considering the turbulence of the airflow," Renewable Energy, Elsevier, vol. 196(C), pages 422-431.
    19. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    20. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2153-:d:1640152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.