IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924017689.html
   My bibliography  Save this article

A novel state of health estimation method for lithium-ion battery pack based on cross generative adversarial networks

Author

Listed:
  • Ren, Yi
  • Tang, Ting
  • Jiang, Fusheng
  • Xia, Quan
  • Zhu, Xiayu
  • Sun, Bo
  • Yang, Dezhen
  • Feng, Qiang
  • Qian, Cheng

Abstract

With the increase in battery pack scale and strict requirements for weight and volume, full deployment of sensors is costly and difficult to achieve, and sensor fault may lead to data loss. Accurately assessing the state of health (SOH) with incomplete data poses a significant challenge. To meet this gap, a novel SOH estimation method for battery pack based on cross generative adversarial network (CrGAN) was proposed. Firstly, an adaptive boosting algorithm was introduced to establish the SOH estimation model of cell by integrating extreme learning machine (ELM) and kernel ELM. Then, based on incomplete battery data, a CrGAN was first proposed for data augmentation of all cells in battery pack. This model was designed by introducing cross-attention mechanism and latent space coding to fuse the shape and time-dependent characteristics. Finally, the SOH and inconsistency of battery pack were analyzed, followed by the comparative verification with the existing typical methods. The results show that the proposed method can accurately generate data for the battery pack SOH estimation. Moreover, the comparative analysis of different incomplete data provides suggestions for sensor design of large-scale battery packs. In this case, 10 sensors are the optimal solution with mean absolute percentage error of 0.43 %.

Suggested Citation

  • Ren, Yi & Tang, Ting & Jiang, Fusheng & Xia, Quan & Zhu, Xiayu & Sun, Bo & Yang, Dezhen & Feng, Qiang & Qian, Cheng, 2025. "A novel state of health estimation method for lithium-ion battery pack based on cross generative adversarial networks," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017689
    DOI: 10.1016/j.apenergy.2024.124385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yang & Wang, Shunli & Chen, Lei & Qi, Chuangshi & Fernandez, Carlos, 2023. "Multiple layer kernel extreme learning machine modeling and eugenics genetic sparrow search algorithm for the state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 282(C).
    2. Biju, Nikhil & Fang, Huazhen, 2023. "BattX: An equivalent circuit model for lithium-ion batteries over broad current ranges," Applied Energy, Elsevier, vol. 339(C).
    3. Zhao, Yong-Ping & Hu, Qian-Kun & Xu, Jian-Guo & Li, Bing & Huang, Gong & Pan, Ying-Ting, 2018. "A robust extreme learning machine for modeling a small-scale turbojet engine," Applied Energy, Elsevier, vol. 218(C), pages 22-35.
    4. Qian, Cheng & Xu, Binghui & Xia, Quan & Ren, Yi & Sun, Bo & Wang, Zili, 2023. "SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model," Applied Energy, Elsevier, vol. 336(C).
    5. Hanlei Sun & Jianrui Sun & Kun Zhao & Licheng Wang & Kai Wang & Mohammad Yaghoub Abdollahzadeh Jamalabadi, 2022. "Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, March.
    6. Tang, Aihua & Wu, Xinyu & Xu, Tingting & Hu, Yuanzhi & Long, Shengwen & Yu, Quanqing, 2024. "State of health estimation based on inconsistent evolution for lithium-ion battery module," Energy, Elsevier, vol. 286(C).
    7. Jin, Haiyan & Cui, Ningmin & Cai, Lei & Meng, Jinhao & Li, Junxin & Peng, Jichang & Zhao, Xinchao, 2023. "State-of-health estimation for lithium-ion batteries with hierarchical feature construction and auto-configurable Gaussian process regression," Energy, Elsevier, vol. 262(PB).
    8. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    9. Bockrath, Steffen & Lorentz, Vincent & Pruckner, Marco, 2023. "State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles," Applied Energy, Elsevier, vol. 329(C).
    10. Dash, P.K. & Rekha Pattnaik, Smruti & N.V.D.V. Prasad, Eluri & Bisoi, Ranjeeta, 2023. "Detection and classification of DC and feeder faults in DC microgrid using new morphological operators with multi class AdaBoost algorithm," Applied Energy, Elsevier, vol. 340(C).
    11. García, Antonio & Monsalve-Serrano, Javier & Ponce-Mora, Alberto & Fogué-Robles, Álvaro, 2023. "Development of a calibration methodology for fitting the response of a lithium-ion cell P2D model using real driving cycles," Energy, Elsevier, vol. 271(C).
    12. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Ma & Xingke Ding & Chongyi Tian & Changbin Tian & Rui Zhu, 2025. "Estimation of Lithium-Ion Battery State of Health-Based Multi-Feature Analysis and Convolutional Neural Network–Long Short-Term Memory," Sustainability, MDPI, vol. 17(9), pages 1-20, April.
    2. Ye, Zhuang & Chang, Jiantao & Yu, Jianbo, 2025. "Prognosability regularized generative adversarial network for battery state of health estimation with limited samples," Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
    2. Dou, Bowen & Hou, Shujuan & Li, Hai & Zhao, Yanpeng & Fan, Yue & Sun, Lei & Chen, Hao-sen, 2025. "Cross-domain state of health estimation for lithium-ion battery based on latent space consistency using few-unlabeled data," Energy, Elsevier, vol. 320(C).
    3. Wang, Tong & Wu, Yan & Zhu, Keming & Cen, Jianmeng & Wang, Shaohong & Huang, Yuqi, 2025. "Deep learning and polarization equilibrium based state of health estimation for lithium-ion battery using partial charging data," Energy, Elsevier, vol. 317(C).
    4. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    5. Sun, Shukai & Che, Liang & Zhao, Ruifeng & Chen, Yizhe & Li, Ming, 2025. "Multi-task learning and voltage reconstruction-based battery degradation prediction under variable operating conditions of energy storage applications," Energy, Elsevier, vol. 317(C).
    6. Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2025. "Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization," Applied Energy, Elsevier, vol. 379(C).
    7. Jiang, Fusheng & Ren, Yi & Tang, Ting & Wu, Zeyu & Xia, Quan & Sun, Bo & Yang, Dezhen, 2024. "An adaptive semi-supervised self-learning method for online state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 305(C).
    8. Xiankun Wei & Mingli Mo & Silun Peng, 2025. "Lithium-Ion Battery Health State Prediction Based on Improved War Optimization Assisted-Long and Short-Term Memory Network," Energies, MDPI, vol. 18(9), pages 1-17, May.
    9. Giovane Ronei Sylvestrin & Joylan Nunes Maciel & Marcio Luís Munhoz Amorim & João Paulo Carmo & José A. Afonso & Sérgio F. Lopes & Oswaldo Hideo Ando Junior, 2025. "State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review," Energies, MDPI, vol. 18(3), pages 1-77, February.
    10. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    11. Lin, Mingqiang & Wu, Jian & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "State of health estimation with attentional long short-term memory network for lithium-ion batteries," Energy, Elsevier, vol. 268(C).
    12. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Lithium Battery Health Factor Extraction Based on Improved Douglas–Peucker Algorithm and SOH Prediction Based on XGboost," Energies, MDPI, vol. 15(16), pages 1-18, August.
    13. Zhigang Liu & Jin Wang & Tao Tao & Ziyun Zhang & Siyi Chen & Yang Yi & Shuang Han & Yongqian Liu, 2023. "Wave Power Prediction Based on Seasonal and Trend Decomposition Using Locally Weighted Scatterplot Smoothing and Dual-Channel Seq2Seq Model," Energies, MDPI, vol. 16(22), pages 1-17, November.
    14. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    15. Zhao, Hang & Zhai, Xiongfei & Liao, Zengbu & Li, Zichen & Song, Zhiping, 2025. "Gas turbine thrust estimation in sensor drift scenarios using a three-stage multi-target domain adaptation method," Energy, Elsevier, vol. 314(C).
    16. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    17. Chenyuan Liu & Heng Li & Kexin Li & Yue Wu & Baogang Lv, 2025. "Deep Learning for State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles: A Systematic Review," Energies, MDPI, vol. 18(6), pages 1-20, March.
    18. Zhang, Jianping & Zhang, Yinjie & Fu, Jian & Zhao, Dawen & Liu, Ping & Zhang, Zhiwei, 2024. "Capacity fading knee-point recognition method and life prediction for lithium-ion batteries using segmented capacity degradation model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    19. Lin, Mingqiang & Wu, Denggao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "Health prognosis for lithium-ion battery with multi-feature optimization," Energy, Elsevier, vol. 264(C).
    20. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.