IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5981-d891624.html
   My bibliography  Save this article

Lithium Battery Health Factor Extraction Based on Improved Douglas–Peucker Algorithm and SOH Prediction Based on XGboost

Author

Listed:
  • Mei Zhang

    (College of Electrical and Information Engineering, Anhui University of Science and Technology (AUST), Huainan 232001, China)

  • Wanli Chen

    (College of Electrical and Information Engineering, Anhui University of Science and Technology (AUST), Huainan 232001, China)

  • Jun Yin

    (College of Electrical and Information Engineering, Anhui University of Science and Technology (AUST), Huainan 232001, China)

  • Tao Feng

    (College of Electrical and Information Engineering, Anhui University of Science and Technology (AUST), Huainan 232001, China)

Abstract

To mine the battery’s health factors more comprehensively and accurately identify the lithium battery’s State of Health (SOH), an Improved Douglas–Peucker feature extraction algorithm is proposed, and the LAOS-XGboost model is proposed to be used to predict the SOH of the battery. Firstly, to solve the problem that the traditional Douglas–Peucker algorithm has difficulties extracting curve features in a fixed dimension, the Douglas–Peucker algorithm is improved by de-thresholding. Then, the Wrapper method combined with the Improved Douglas–Peucker algorithm is used to construct the feature engineering of battery life prediction, and the optimal feature subset is obtained. Then, LAOS-XGboost is used to establish a battery SOH prediction model; finally, this model is used to predict the SOH of different batteries and the same battery, and the robustness of the model is analyzed. The experimental results show that the R2 of all XGboost models is higher than 0.97 in the prediction experiments of different batteries. The AE of the LAOS-XGboost model is 0, and the TIC index is less than 3% under 10 dB SNR. In the same battery prediction experiment, the TIC index of the model is less than 0.3%.

Suggested Citation

  • Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Lithium Battery Health Factor Extraction Based on Improved Douglas–Peucker Algorithm and SOH Prediction Based on XGboost," Energies, MDPI, vol. 15(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5981-:d:891624
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Yang Zhang & Bo Guo, 2015. "Online Capacity Estimation of Lithium-Ion Batteries Based on Novel Feature Extraction and Adaptive Multi-Kernel Relevance Vector Machine," Energies, MDPI, vol. 8(11), pages 1-19, November.
    3. Sara Rahimifard & Saeid Habibi & Gillian Goward & Jimi Tjong, 2021. "Adaptive Smooth Variable Structure Filter Strategy for State Estimation of Electric Vehicle Batteries," Energies, MDPI, vol. 14(24), pages 1-19, December.
    4. Esfandyari, M.J. & Esfahanian, V. & Hairi Yazdi, M.R. & Nehzati, H. & Shekoofa, O., 2019. "A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle," Energy, Elsevier, vol. 176(C), pages 505-520.
    5. Zhengyi Bao & Jiahao Jiang & Chunxiang Zhu & Mingyu Gao, 2022. "A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 15(12), pages 1-16, June.
    6. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
    7. Ethelbert Ezemobi & Andrea Tonoli & Mario Silvagni, 2021. "Battery State of Health Estimation with Improved Generalization Using Parallel Layer Extreme Learning Machine," Energies, MDPI, vol. 14(8), pages 1-15, April.
    8. Hanlei Sun & Jianrui Sun & Kun Zhao & Licheng Wang & Kai Wang & Mohammad Yaghoub Abdollahzadeh Jamalabadi, 2022. "Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, March.
    9. Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.
    10. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    11. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Yangguang & Lv, Ziqi & Xu, Zhiqiang & Wang, Qun & Wang, Zhe, 2023. "Slurry-ability mathematical modeling of microwave-modified lignite: A comparative analysis of multivariate non-linear regression model and XGBoost algorithm model," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    2. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    3. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    4. Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2021. "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy, Elsevier, vol. 225(C).
    5. Lin, Chuanping & Xu, Jun & Shi, Mingjie & Mei, Xuesong, 2022. "Constant current charging time based fast state-of-health estimation for lithium-ion batteries," Energy, Elsevier, vol. 247(C).
    6. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    7. Cheng, Gong & Wang, Xinzhi & He, Yurong, 2021. "Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network," Energy, Elsevier, vol. 232(C).
    8. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    9. Jin, Haiyan & Cui, Ningmin & Cai, Lei & Meng, Jinhao & Li, Junxin & Peng, Jichang & Zhao, Xinchao, 2023. "State-of-health estimation for lithium-ion batteries with hierarchical feature construction and auto-configurable Gaussian process regression," Energy, Elsevier, vol. 262(PB).
    10. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
    11. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    13. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    14. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    15. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    16. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    17. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    18. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    19. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    20. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5981-:d:891624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.