IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8712-d1760345.html
   My bibliography  Save this article

Towards Sustainable Greenhouse Design: A Numerical Study on Temperature Control in Multi-Span Hoop Structures

Author

Listed:
  • Ramadas Narayanan

    (School of Engineering & Technology, Central Queensland University, Bundaberg Campus, Branyan 4670, QLD, Australia)

  • Sai Ruthwick Madas

    (School of Engineering & Technology, Central Queensland University, Bundaberg Campus, Branyan 4670, QLD, Australia)

  • Rohit Singh

    (School of Engineering & Technology, Central Queensland University, Bundaberg Campus, Branyan 4670, QLD, Australia)

Abstract

A greenhouse with properly managed temperature can provide 5 to 10 times greater yield than conventional methods for crops such as blueberries, cucumbers, and tomatoes; the yield is also of higher quality. However, existing designs in Australia often follow practices developed for cooler regions, making them less effective under local high-radiation conditions. To determine the design parameters for the local condition, this study develops and validates a numerical model of a commercial blueberry greenhouse, applying it to examine how structural parameters, including overall height, arch height, and number of spans, influence indoor temperature distribution in multi-span hoop structures. Results show that increasing greenhouse height by 0.40 m reduced average temperature by up to 0.62%, whereas raising arch height by the same increment led to a marginal increase of 0.15%. In contrast, expanding span numbers from 2 to 12 resulted in a maximum temperature difference of 6 °C (approximately 20% above ambient temperature) across the structure, posing significant risks to plant growth. These findings provide a theoretical basis for optimising design parameters that minimise heat stress while reducing reliance on fossil-fuel-based cooling. The study highlights how tailoring greenhouse design to local conditions can improve productivity and support both environmental and economic sustainability.

Suggested Citation

  • Ramadas Narayanan & Sai Ruthwick Madas & Rohit Singh, 2025. "Towards Sustainable Greenhouse Design: A Numerical Study on Temperature Control in Multi-Span Hoop Structures," Sustainability, MDPI, vol. 17(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8712-:d:1760345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Di Martino, Marcello & Namany, Sarah & Mahmood, Farhat & Al-Ansari, Tareq & Linke, Patrick & Pistikopoulos, Efstratios N., 2025. "Food-energy-water nexus considerations in optimal greenhouse farming systems design and operation," Applied Energy, Elsevier, vol. 379(C).
    2. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    3. Nima Asgari & Matthew T. McDonald & Joshua M. Pearce, 2023. "Energy Modeling and Techno-Economic Feasibility Analysis of Greenhouses for Tomato Cultivation Utilizing the Waste Heat of Cryptocurrency Miners," Energies, MDPI, vol. 16(3), pages 1-42, January.
    4. Gupta, Mathala J & Chandra, Pitam, 2002. "Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control," Energy, Elsevier, vol. 27(8), pages 777-794.
    5. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Cemek, Bilal & Demir, Yusuf & Uzun, Sezgin & Ceyhan, Vedat, 2006. "The effects of different greenhouse covering materials on energy requirement, growth and yield of aubergine," Energy, Elsevier, vol. 31(12), pages 1780-1788.
    7. Jarimi, Hasila & Abu Bakar, Mohd Nazari & Othman, Mahmod & Din, Mahadzir Hj, 2016. "Bi-fluid photovoltaic/thermal (PV/T) solar collector: Experimental validation of a 2-D theoretical model," Renewable Energy, Elsevier, vol. 85(C), pages 1052-1067.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Chaoqing & Zhang, Lizhuang & Wang, Rui & Yang, Hongbin & Xu, Zhao & Yan, Suying, 2021. "Greenhouse cover plate with dimming and temperature control function," Energy, Elsevier, vol. 221(C).
    2. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Wenfei Guan & Wenzhong Guo & Fan Chen & Xiaobei Han & Haiguang Wang & Weituo Sun & Qian Zhao & Dongdong Jia & Xiaoming Wei & Qingzhen Zhu, 2024. "Multi-Span Greenhouse Energy Saving by External Insulation: System Design and Implementation," Agriculture, MDPI, vol. 14(2), pages 1-15, February.
    4. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    5. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    6. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    7. Xu, Demin & Fei, Shuaipeng & Wang, Zhi & Zhu, Jinyu & Ma, Yuntao, 2024. "Optimum design of Chinese solar greenhouses for maximum energy availability," Energy, Elsevier, vol. 304(C).
    8. repec:ags:ccsesa:349390 is not listed on IDEAS
    9. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    10. Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
    11. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    12. Yao, Haoyi & Liang, Jingkang & Wang, Yunfeng & Li, Ming & Fan, Fangling & Ma, Xun & Xiao, Xin, 2025. "The influence of photovoltaic modules on the greenhouse micro-environment - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    13. Yusra Hasan & William David Lubitz, 2024. "A Sustainable Agri-Photovoltaic Greenhouse for Lettuce Production in Qatar," Energies, MDPI, vol. 17(19), pages 1-22, October.
    14. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    15. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    16. Rao, Sajjad Ali & Singh, Poonam, . "Passive Solar Greenhouse-A Sustainable Option for Propagating Sweet Potato for Colder Climatic Regions," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 13(01).
    17. Nima Asgari & Uzair Jamil & Joshua M. Pearce, 2024. "Net Zero Agrivoltaic Arrays for Agrotunnel Vertical Growing Systems: Energy Analysis and System Sizing," Sustainability, MDPI, vol. 16(14), pages 1-32, July.
    18. James Bambara & Andreas K. Athienitis, 2018. "Energy and Economic Analysis for Greenhouse Ground Insulation Design," Energies, MDPI, vol. 11(11), pages 1-15, November.
    19. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    20. Chan Kyu Lee & Mo Chung & Ki-Yeol Shin & Yong-Hoon Im & Si-Won Yoon, 2019. "A Study of the Effects of Enhanced Uniformity Control of Greenhouse Environment Variables on Crop Growth," Energies, MDPI, vol. 12(9), pages 1-24, May.
    21. Subin Song & JungHo Jeon & Seonghwan Yoon, 2025. "Optimizing Energy Efficiency and Light Transmission in Greenhouses Using Rotating Low-Emissivity-Coated Envelopes," Energies, MDPI, vol. 18(7), pages 1-18, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8712-:d:1760345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.