IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1613-d1619024.html
   My bibliography  Save this article

Optimizing Energy Efficiency and Light Transmission in Greenhouses Using Rotating Low-Emissivity-Coated Envelopes

Author

Listed:
  • Subin Song

    (Department of Architecture, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea)

  • JungHo Jeon

    (Department of Architectural Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea)

  • Seonghwan Yoon

    (Department of Architecture, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
    Institute for Future Earth, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea)

Abstract

Growing demand for sustainable agricultural solutions has driven innovations in greenhouse design, particularly in urban areas. This study evaluated the relationship between transparent envelope thermal properties and greenhouse energy loads through regression analysis using DesignBuilder simulations. The thermal performance of the envelope was designated as independent variables to quantify its impact on heating and cooling loads. Based on this analysis, a rotatable low-emissivity (low-E) coating envelope system optimized for temperate climate zones was proposed. This system allows seasonal adjustment of coating orientation to enhance energy efficiency. Compared to traditional materials, this approach achieved up to 16% energy savings without compromising visible light transmittance, essential for crop growth. While double-glazed low-E glass demonstrated the highest energy reduction (22%), it reduced visible light transmittance by 20%, potentially affecting crop productivity. In contrast, the proposed system maintained high visible light transmittance while achieving significant energy efficiency, balancing energy performance and light environment requirements. Additionally, integrating the greenhouse with building structures resulted in a 31.91% reduction in building energy consumption through improved insulation. These findings highlight the potential of adaptable greenhouse envelopes to improve energy performance and support urban sustainability.

Suggested Citation

  • Subin Song & JungHo Jeon & Seonghwan Yoon, 2025. "Optimizing Energy Efficiency and Light Transmission in Greenhouses Using Rotating Low-Emissivity-Coated Envelopes," Energies, MDPI, vol. 18(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1613-:d:1619024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nadal, Ana & Llorach-Massana, Pere & Cuerva, Eva & López-Capel, Elisa & Montero, Juan Ignacio & Josa, Alejandro & Rieradevall, Joan & Royapoor, Mohammad, 2017. "Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context," Applied Energy, Elsevier, vol. 187(C), pages 338-351.
    2. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    3. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Muñoz-Liesa, Joan & Royapoor, Mohammad & López-Capel, Elisa & Cuerva, Eva & Rufí-Salís, Martí & Gassó-Domingo, Santiago & Josa, Alejandro, 2020. "Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse," Renewable Energy, Elsevier, vol. 156(C), pages 696-709.
    5. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    6. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Jing, Rui & Liu, Jiahui & Zhang, Haoran & Zhong, Fenglin & Liu, Yupeng & Lin, Jianyi, 2022. "Unlock the hidden potential of urban rooftop agrivoltaics energy-food-nexus," Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Moreno, Álex & Chemisana, Daniel & Lamnatou, Chrysovalantou & Maestro, Santiago, 2023. "Energy and photosynthetic performance investigation of a semitransparent photovoltaic rooftop greenhouse for building integration," Renewable Energy, Elsevier, vol. 215(C).
    3. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    4. Xu, Demin & Fei, Shuaipeng & Wang, Zhi & Zhu, Jinyu & Ma, Yuntao, 2024. "Optimum design of Chinese solar greenhouses for maximum energy availability," Energy, Elsevier, vol. 304(C).
    5. Rabiu, Anis & Adesanya, Misbaudeen Aderemi & Na, Wook-Ho & Ogunlowo, Qazeem O. & Akpenpuun, Timothy D. & Kim, Hyeon Tae & Lee, Hyun-Woo, 2023. "Thermal performance and energy cost of Korean multispan greenhouse energy-saving screens," Energy, Elsevier, vol. 285(C).
    6. Drottberger, Annie & Zhang, Yizhi & Yong, Jean Wan Hong & Dubois, Marie-Claude, 2023. "Urban farming with rooftop greenhouses: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Xinge, Chen & Jianbin, Zang & Gang, Wu & Hao, Liang & Yunfan, Yang & Dawei, Shi & Chaoqing, Feng, 2024. "Coupled system for underground heating exchange and solar heat-humidity regulation in greenhouse: Experimental study and simulation analysis," Energy, Elsevier, vol. 301(C).
    8. Mingzhi Zhao & Ningbo Wang & Chun Chang & Xiaoming Hu & Yingjie Liu & Lei Liu & Jianan Wang, 2023. "Comparative Analysis of the Filling Mass of Vertical Heat Exchanger Tubes on the Thermal Environment of Arched Greenhouses," Energies, MDPI, vol. 16(13), pages 1-28, July.
    9. Qi, Di & Zhang, Kunlun & Zhao, Chuangyao & Li, Ang & Song, Bingye & Li, Angui, 2024. "Optimized model predictive control for solar assisted earth air heat exchanger system in greenhouse," Renewable Energy, Elsevier, vol. 228(C).
    10. Shao, Junyan & Chen, Houhe & Çelik, Özgür & Wei, Baoze & Vasquez, Juan C. & Guerrero, Josep M., 2025. "Trade-off both in the clearing market and ancillary services markets for agriculture park operator: A strategic bilevel multi-objective programming," Applied Energy, Elsevier, vol. 388(C).
    11. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Wang, XiaoLong & Sun, GuoChen & Zhang, LinHua & Lei, WenJun & Zhang, WenKe & Li, HaoYi & Zhang, ChunYue & Guo, JingChenxi, 2023. "Application of green energy in smart rural passive heating: A case study of indoor temperature self-regulating greenhouse of winter in Jinan, China," Energy, Elsevier, vol. 278(C).
    13. Yang, Junqin & Zhao, Hui & Li, Chenchen & Li, Xiuwei, 2021. "A direct energy reuse strategy for absorption air-conditioning system based on electrode regeneration method," Renewable Energy, Elsevier, vol. 168(C), pages 353-364.
    14. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    15. Dranka, Géremi Gilson & Aguiar Ferreira, Rodrigo Manoel & de Alencar, Álvaro Peixoto & Leludak, Jorge Assade & Candido, Roberto & Pazinatto, Murilo dos Santos & Silva, Lucas Massao & Zardo, Isadora Za, 2025. "A comprehensive audit framework for rural photovoltaic systems: On-site insights and key findings from Brazil," Energy, Elsevier, vol. 322(C).
    16. Zhao, Xingqi & Ke, Xiaojun & Jiang, Songyu, 2024. "Spatial impact of green finance reform pilot zones on environmental efficiency: A pathway to mitigating China's energy trilemma," Energy, Elsevier, vol. 312(C).
    17. Eun-Jung Choi & Doyun Lee & Sang-Min Lee, 2024. "Impact of Building Integrated Rooftop Greenhouse (BiRTG) on Heating and Cooling Energy Load: A Study Based on a Container with Rooftop Greenhouse," Agriculture, MDPI, vol. 14(8), pages 1-18, August.
    18. Zhang, Siqi & Gong, Jirui & Xiao, Cunde & Yang, Xiaofan & Li, Xiaobing & Zhang, Zihe & Song, Liangyuan & Zhang, Weiyuan & Dong, Xuede & Hu, Yuxia, 2024. "Bupleurum chinense and Medicago sativa sustain their growth in agrophotovoltaic systems by regulating photosynthetic mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    20. Li, Qingxiang & Zanelli, Alessandra, 2021. "A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1613-:d:1619024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.