IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i22p10079-d1524322.html
   My bibliography  Save this article

Balancing Stakeholders’ Perspectives for Sustainability: GIS-MCDM for Onshore Wind Energy Planning

Author

Listed:
  • Delmaria Richards

    (Graduate School of Science and Technology, Division of Life and Earth Sciences, Faculty of Science, Engineering, Information and Life Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
    Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan)

  • Helmut Yabar

    (Graduate School of Science and Technology, Division of Life and Earth Sciences, Faculty of Science, Engineering, Information and Life Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
    Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan)

  • Takeshi Mizunoya

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan)

  • Randy Koon Koon

    (School of Mechanical Engineering, Coventry University, Coventry CV1 2JH, UK)

  • Gia Hong Tran

    (Department of Materials Sciences and Engineering, Feng Chia University, Taichung City 407, Taiwan
    Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Vietnam)

  • Yannick Esopere

    (Graduate School of Science and Technology, Division of Life and Earth Sciences, Faculty of Science, Engineering, Information and Life Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
    Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan)

Abstract

This study supports Jamaica’s renewable energy implementation strategies by providing updated wind atlases and identifying suitable locations for future wind farms. Using a GIS-based Analytic Hierarchy Process with multi-criteria decision-making (AHP-MCDM), this research integrates stakeholders’ opinions, environmental considerations, and technical factors to assess land suitability for wind energy development. The analysis reveals that Jamaica has the potential to increase its wind power output by 8.99% compared to the current production of 99 MW. This expansion could significantly contribute to offsetting fossil fuel-based energy consumption and reducing carbon dioxide emissions. It identifies sites across several parishes, including Westmoreland, Clarendon, St. Mary, and St. James, as highly suitable for utility-scale wind farm development. By providing detailed spatial information and estimated energy outputs, this research offers valuable insights for energy planners, investors, and policymakers to create sustainable energy policies and advance Jamaica’s 50% renewable energy goal by 2030.

Suggested Citation

  • Delmaria Richards & Helmut Yabar & Takeshi Mizunoya & Randy Koon Koon & Gia Hong Tran & Yannick Esopere, 2024. "Balancing Stakeholders’ Perspectives for Sustainability: GIS-MCDM for Onshore Wind Energy Planning," Sustainability, MDPI, vol. 16(22), pages 1-41, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10079-:d:1524322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/22/10079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/22/10079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mentis, Dimitrios & Hermann, Sebastian & Howells, Mark & Welsch, Manuel & Siyal, Shahid Hussain, 2015. "Assessing the technical wind energy potential in Africa a GIS-based approach," Renewable Energy, Elsevier, vol. 83(C), pages 110-125.
    2. Thomas L. Saaty, 1987. "Risk—Its Priority and Probability: The Analytic Hierarchy Process," Risk Analysis, John Wiley & Sons, vol. 7(2), pages 159-172, June.
    3. Charabi, Yassine & Gastli, Adel, 2011. "PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation," Renewable Energy, Elsevier, vol. 36(9), pages 2554-2561.
    4. Izanloo, Milad & Noorollahi, Younes & Aslani, Alireza, 2021. "Future energy planning to maximize renewable energy share for the south Caspian Sea climate," Renewable Energy, Elsevier, vol. 175(C), pages 660-675.
    5. K. Rezaei-Moghaddam & E. Karami, 2008. "A multiple criteria evaluation of sustainable agricultural development models using AHP," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(4), pages 407-426, August.
    6. Delmaria Richards & Helmut Yabar, 2022. "Potential of Renewable Energy in Jamaica’s Power Sector: Feasibility Analysis of Biogas Production for Electricity Generation," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    7. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    8. Cevallos-Sierra, Jaime & Ramos-Martin, Jesús, 2018. "Spatial assessment of the potential of renewable energy: The case of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1154-1165.
    9. Haoyuan Hong & Himan Shahabi & Ataollah Shirzadi & Wei Chen & Kamran Chapi & Baharin Bin Ahmad & Majid Shadman Roodposhti & Arastoo Yari Hesar & Yingying Tian & Dieu Tien Bui, 2019. "Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 173-212, March.
    10. Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P., 2021. "Onshore wind farms GIS-Assisted suitability analysis using PROMETHEE II," Energy Policy, Elsevier, vol. 158(C).
    11. Adebayo Ojo & Maurizio Collu & Andrea Coraddu, 2024. "Preliminary Techno-Economic Study of Optimized Floating Offshore Wind Turbine Substructure," Energies, MDPI, vol. 17(18), pages 1-27, September.
    12. A. P. Vavatsikos & O. E. Demesouka & K. P. Anagnostopoulos, 2020. "GIS-based suitability analysis using fuzzy PROMETHEE," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(4), pages 604-628, March.
    13. Gabriela Elizondo Azuela & Rafael Ben, 2014. "Implementing Onshore Wind Power Projects," World Bank Publications - Reports 18412, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.
    2. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    3. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    4. Delmaria Richards & Helmut Yabar & Takeshi Mizunoya, 2022. "Spatial Mapping of Jamaica’s High-Resolution Wind Atlas: An Environmental-Sociotechnical Account," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    5. Saeidi, Reza & Noorollahi, Younes & Aghaz, Javad & Chang, Soowon, 2023. "FUZZY-TOPSIS method for defining optimal parameters and finding suitable sites for PV power plants," Energy, Elsevier, vol. 282(C).
    6. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    7. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    8. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    9. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    10. Ji-Hee Lee & Woo-Young Chun & Jun-Ho Choi, 2021. "Weighting the Attributes of Human-Related Activities for Fire Safety Measures in Historic Villages," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    11. Patrick Krieger & Carsten Lausberg, 2021. "Entscheidungen, Entscheidungsfindung und Entscheidungsunterstützung in der Immobilienwirtschaft: Eine systematische Literaturübersicht [Decisions, decision-making and decisions support systems in r," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 7(1), pages 1-33, April.
    12. Zeshui Xu, 2013. "Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 463-482, May.
    13. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    14. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    15. Qi Wei & Rui Wang & Chuan-Yang Ruan, 2024. "Similarity Measures of Probabilistic Interval Preference Ordering Sets and Their Applications in Decision-Making," Mathematics, MDPI, vol. 12(20), pages 1-26, October.
    16. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    17. Marios Tsioufis & Antonios Fytopoulos & Dimitra Kalaitzi & Thomas A. Alexopoulos, 2024. "Discovering maritime-piracy hotspots: a study based on AHP and spatio-temporal analysis," Annals of Operations Research, Springer, vol. 335(2), pages 861-883, April.
    18. Stefanos Dosis & George P. Petropoulos & Kleomenis Kalogeropoulos, 2023. "A Geospatial Approach to Identify and Evaluate Ecological Restoration Sites in Post-Fire Landscapes," Land, MDPI, vol. 12(12), pages 1-23, December.
    19. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    20. Goraj, Rafał & Kiciński, Marcin & Ślefarski, Rafał & Duczkowska, Anna, 2023. "Validity of decision criteria for selecting power-to-gas projects in Poland," Utilities Policy, Elsevier, vol. 83(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:22:p:10079-:d:1524322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.