IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6457-d823787.html
   My bibliography  Save this article

Potential of Renewable Energy in Jamaica’s Power Sector: Feasibility Analysis of Biogas Production for Electricity Generation

Author

Listed:
  • Delmaria Richards

    (Graduate School of Science, Technology, Information Sciences, Tsukuba University, 1-1-1, Tennodai, Tsukuba City 305-8577, Japan)

  • Helmut Yabar

    (Graduate School of Life and Environmental Sciences, Tsukuba University, 1-1-1, Tennodai, Tsukuba City 305-8577, Japan)

Abstract

Jamaica is heavily dependent on fossil fuels to meet its energy demand and is currently seeking to reduce consumption. Accordingly, it is essential to investigate the expansion of renewable energy systems to achieve its 2030 renewable energy goal of 50%, with 70% diversification in energy types, as outlined in the National Energy Policy 2009–2030. This study explores biogas feasibility in Jamaica and discusses the potential for electricity generation from combinations of dairy cow and Swine feces with sugarcane bagasse. The study’s primary purpose is to assess the feasibility of biogas production from livestock manure and sugarcane bagasse for electricity generation and manure treatment. Findings reveal that biogas anaerobic digestion and the co-digestion of different varieties of animal manure with sugarcane bagasse can generate up to 122,607.68 MWh or 2.49% of Jamaica’s total electrical energy generation in 2019. The findings indicate a high potential for the installation of community-based plants. Moreover, considering all scenarios and the remaining feedstock, potential electrical energy increases to 222,868.60 MWh (4.53% of total energy generation). This power may be fed to the electrical grid network or consumed by local producers. In addition, electric power generation from animal manure and sugarcane bagasse is feasible with improved technical capability and human development. Additionally, anaerobic digestion and co-digestion of sugarcane bagasse plus animal manure offer an excellent solution to mitigate climate change.

Suggested Citation

  • Delmaria Richards & Helmut Yabar, 2022. "Potential of Renewable Energy in Jamaica’s Power Sector: Feasibility Analysis of Biogas Production for Electricity Generation," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6457-:d:823787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhattacharya, S.C. & Thomas, Jossy M. & Abdul Salam, P., 1997. "Greenhouse gas emissions and the mitigation potential of using animal wastes in Asia," Energy, Elsevier, vol. 22(11), pages 1079-1085.
    2. Karellas, Sotirios & Boukis, Ioannis & Kontopoulos, Georgios, 2010. "Development of an investment decision tool for biogas production from agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1273-1282, May.
    3. Prasertsan, S. & Sajjakulnukit, B., 2006. "Biomass and biogas energy in Thailand: Potential, opportunity and barriers," Renewable Energy, Elsevier, vol. 31(5), pages 599-610.
    4. Alves, Moises & Ponce, Gustavo H.S.F. & Silva, Maria Aparecida & Ensinas, Adriano V., 2015. "Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel," Energy, Elsevier, vol. 91(C), pages 751-757.
    5. Loy, Detlef & Coviello, Manlio, 2005. "Renewable energies potential in Jamaica," Documentos de Proyectos 4138, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    6. Md. Alhaz Uddin & Sk. Yasir Arafat Siddiki & Shams Forruque Ahmed & Zahidul Islam Rony & M. A. K. Chowdhury & M. Mofijur, 2021. "Estimation of Sustainable Bioenergy Production from Olive Mill Solid Waste," Energies, MDPI, vol. 14(22), pages 1-11, November.
    7. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    8. Government of India GOI, 2018. "National Policy on Biofuels," Working Papers id:12780, eSocialSciences.
    9. K Hossain, A & Badr, O, 2007. "Prospects of renewable energy utilisation for electricity generation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1617-1649, October.
    10. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sultana Sharmin & Helmut Yabar & Delmaria Richards, 2023. "Green Energy Optimization in Dinajpur, Bangladesh: A Path to Net Neutrality," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    2. Nicoleta Ungureanu & Valentin Vlăduț & Sorin-Ștefan Biriș, 2022. "Sustainable Valorization of Waste and By-Products from Sugarcane Processing," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    3. Delmaria Richards & Helmut Yabar & Takeshi Mizunoya, 2022. "Spatial Mapping of Jamaica’s High-Resolution Wind Atlas: An Environmental-Sociotechnical Account," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    4. Marie-Noël Mansour & Thomas Lendormi & Nicolas Louka & Richard G. Maroun & Zeina Hobaika & Jean-Louis Lanoisellé, 2023. "Anaerobic Digestion of Poultry Droppings in Semi-Continuous Mode and Effect of Their Co-Digestion with Physico-Chemical Sludge on Methane Yield," Sustainability, MDPI, vol. 15(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Omendra Kumar, 2019. "Exergy analysis of a grid-connected bagasse-based cogeneration plant of sugar factory and exhaust heat utilization for running a cold storage," Renewable Energy, Elsevier, vol. 143(C), pages 149-163.
    2. Long, Aoife & Murphy, Jerry D., 2019. "Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Shahzad, M. Kashif & Zahid, Adeem & ur Rashid, Tanzeel & Rehan, Mirza Abdullah & Ali, Muzaffar & Ahmad, Mueen, 2017. "Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software," Renewable Energy, Elsevier, vol. 106(C), pages 264-273.
    4. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    5. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    6. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    7. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    8. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    9. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.
    10. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    11. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    12. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    13. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    14. Hamad, Tarek A. & Agll, Abdulhakim A. & Hamad, Yousif M. & Bapat, Sushrut & Thomas, Mathew & Martin, Kevin B. & Sheffield, John W., 2014. "Study of a molten carbonate fuel cell combined heat, hydrogen and power system," Energy, Elsevier, vol. 75(C), pages 579-588.
    15. Maw Maw Tun & Dagmar Juchelková, 2019. "Biomass Sources and Energy Potential for Energy Sector in Myanmar: An Outlook," Resources, MDPI, vol. 8(2), pages 1-19, May.
    16. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    17. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    18. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    19. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    20. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6457-:d:823787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.