IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3780-d580852.html
   My bibliography  Save this article

Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops

Author

Listed:
  • José Antonio Soriano

    (Campus de Excelencia Internacional en Energía y Medioambiente, Escuela de Ingeniería Industrial y Aeroespacial de Toledo University of de Castilla-La Mancha, Old Royal Arms Factory, Edif. Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain)

  • Reyes García-Contreras

    (Campus de Excelencia Internacional en Energía y Medioambiente, Escuela de Ingeniería Industrial y Aeroespacial de Toledo University of de Castilla-La Mancha, Old Royal Arms Factory, Edif. Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain)

  • Antonio José Carpio de Los Pinos

    (Campus de Excelencia Internacional en Energía y Medioambiente, Escuela de Ingeniería Industrial y Aeroespacial de Toledo University of de Castilla-La Mancha, Old Royal Arms Factory, Edif. Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain)

Abstract

The cultivation of short rotation coppice (SRC) is a sustainable and ecological alternative for the production of energy vectors today. For its use, it is necessary to know the thermochemical properties of the biomass produced, as well as the differences between genotypes and varieties. In this work, the thermochemical properties of five different Populus clones grow up in Mediterranean basin, with two different age categories, are analyzed. The moisture content, wood density, heating value, ash content, energy density, composition and the volatile matter were measured, separating wood and crust fractions. The mean crust content for all clones was near to 10% but it is observed that the youngest clones have higher content of crust and humidity. The 3 year-old clones generally show lower humidity and ash content and higher density of wood and fixed carbon, consequently showing a higher heating value. In addition, 3 year-old clones are encouraged since they have a lower content of majority and minority elements in proportion that can generate less operating and environmental problems.

Suggested Citation

  • José Antonio Soriano & Reyes García-Contreras & Antonio José Carpio de Los Pinos, 2021. "Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops," Energies, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3780-:d:580852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Esperanza Monedero & Juan José Hernández & Rocío Collado, 2017. "Combustion-Related Properties of Poplar, Willow and Black Locust to be used as Fuels in Power Plants," Energies, MDPI, vol. 10(7), pages 1-11, July.
    2. Prasertsan, S. & Sajjakulnukit, B., 2006. "Biomass and biogas energy in Thailand: Potential, opportunity and barriers," Renewable Energy, Elsevier, vol. 31(5), pages 599-610.
    3. Kinga Borek & Wacław Romaniuk & Kamil Roman & Michał Roman & Maciej Kuboń, 2021. "The Analysis of a Prototype Installation for Biogas Production from Chosen Agricultural Substrates," Energies, MDPI, vol. 14(8), pages 1-19, April.
    4. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Mariusz Jerzy Stolarski & Kazimierz Warmiński & Michał Krzyżaniak, 2020. "Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland," Energies, MDPI, vol. 13(6), pages 1-13, March.
    6. Natalia Stefania Piotrowska & Stanisław Zbigniew Czachorowski & Mariusz Jerzy Stolarski, 2020. "Ground Beetles ( Carabidae ) in the Short-Rotation Coppice Willow and Poplar Plants—Synergistic Benefits System," Agriculture, MDPI, vol. 10(12), pages 1-23, December.
    7. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Rosillo-Calle, 2022. "New Insights into Biomass and Biofuels in Rapidly Changing Energy Scenario," Energies, MDPI, vol. 15(18), pages 1-5, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński & Dariusz Załuski & Ewelina Olba-Zięty, 2020. "Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition," Energies, MDPI, vol. 13(16), pages 1-17, August.
    3. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.
    4. Maw Maw Tun & Dagmar Juchelková, 2019. "Biomass Sources and Energy Potential for Energy Sector in Myanmar: An Outlook," Resources, MDPI, vol. 8(2), pages 1-19, May.
    5. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    6. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    7. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.
    8. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    9. Rocío Collado & Esperanza Monedero & Víctor Manuel Casero-Alonso & Licesio J. Rodríguez-Aragón & Juan José Hernández, 2022. "Almond Shells and Exhausted Olive Cake as Fuels for Biomass Domestic Boilers: Optimization, Performance and Pollutant Emissions," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    10. Kamila Słupińska & Marek Wieruszewski & Piotr Szczypa & Anna Kożuch & Krzysztof Adamowicz, 2022. "Public Perception of the Use of Woody Biomass for Energy Purposes in the Evaluation of Content and Information Management on the Internet," Energies, MDPI, vol. 15(19), pages 1-11, September.
    11. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    12. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2017. "Financial attractiveness of decentralized renewable energy systems – A case of the central Himalayan state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 101(C), pages 973-991.
    13. Smoliński, Adam & Stańczyk, Krzysztof & Howaniec, Natalia, 2010. "Steam gasification of selected energy crops in a fixed bed reactor," Renewable Energy, Elsevier, vol. 35(2), pages 397-404.
    14. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
    15. Stich, J. & Ramachandran, S. & Hamacher, T. & Stimming, U., 2017. "Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia," Energy, Elsevier, vol. 135(C), pages 930-942.
    16. Phisamas Hwangdee & Singrun Charee & Watcharin Kheowkrai & Chaiyan Junsiri & Kittipong Laloon, 2022. "Application of the Simplex-Centroid Mixture Design to Biomass Charcoal Powder Formulation Ratio for Biomass Charcoal Briquettes," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    17. Purohit, Pallav & Michaelowa, Axel, 2007. "CDM potential of bagasse cogeneration in India," Energy Policy, Elsevier, vol. 35(10), pages 4779-4798, October.
    18. Hosseinipour, Sayed Amir & Mehrpooya, Mehdi, 2019. "Comparison of the biogas upgrading methods as a transportation fuel," Renewable Energy, Elsevier, vol. 130(C), pages 641-655.
    19. Payakkawan, Poomyos & Areejit, Suwilai & Sooraksa, Pitikhate, 2014. "Design, fabrication and operation of continuous microwave biomass carbonization system," Renewable Energy, Elsevier, vol. 66(C), pages 49-55.
    20. Maginot Ngangyo Heya & Rahim Foroughbakhch Pournavab & Artemio Carrillo Parra & Volker Zelinski & Lidia Rosaura Salas Cruz, 2019. "Elemental Composition and Flue Gas Emissions of Different Components from Five Semi-Arid Woody Species in Pyrolysed and Non-Pyrolysed Material," Sustainability, MDPI, vol. 11(5), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3780-:d:580852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.