IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v135y2017icp930-942.html
   My bibliography  Save this article

Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia

Author

Listed:
  • Stich, J.
  • Ramachandran, S.
  • Hamacher, T.
  • Stimming, U.

Abstract

Power generation from biomass residues is an attractive option for supplying the rapidly increasing power demand of the Association of South East Asian Nations (ASEAN) in a sustainable and a cost-effective manner. In this paper, we assess the total quantity and location of biomass residues from agriculture, livestock and forestry activities in ASEAN, evaluate their technical power generation potential and estimate the cost of electricity production from these residues. A cost optimization model is developed to identify cost-effective options of power generation from biomass residues using various conversion technologies. We estimate the total available thermal energy from biomass residues in ASEAN to be approximately 1076 TWh. About 86% of the total energy potential is provided by agricultural residues, with rice, sugarcane and palm oil residues being the major contributors. We find the highest energy potentials to be located in Indonesia (407 TWh), Thailand (194 TWh) and Vietnam (153 TWh). The estimated maximum technical potential for electricity generation from biomass residues in ASEAN amounts to 360 TWh. Power generation costs vary within a wide range from less than 40 USD/MWh to more than 200 USD/MWh.

Suggested Citation

  • Stich, J. & Ramachandran, S. & Hamacher, T. & Stimming, U., 2017. "Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia," Energy, Elsevier, vol. 135(C), pages 930-942.
  • Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:930-942
    DOI: 10.1016/j.energy.2017.06.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421731157X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H., 2011. "Logistics cost analysis of rice straw for biomass power generation in Thailand," Energy, Elsevier, vol. 36(3), pages 1435-1441.
    2. Gemelli, Alberto & Mancini, Adriano & Longhi, Sauro, 2011. "GIS-based energy-economic model of low temperature geothermal resources: A case study in the Italian Marche region," Renewable Energy, Elsevier, vol. 36(9), pages 2474-2483.
    3. Prasertsan, S. & Sajjakulnukit, B., 2006. "Biomass and biogas energy in Thailand: Potential, opportunity and barriers," Renewable Energy, Elsevier, vol. 31(5), pages 599-610.
    4. Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
    5. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Ahmad-Yazid, A., 2012. "A review on electricity generation based on biomass residue in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5879-5889.
    6. Natarajan, Karthikeyan & Latva-Käyrä, Petri & Zyadin, Anas & Pelkonen, Paavo, 2016. "New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 256-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    2. S. M. Shafie & Z. Othman & N. Hami, 2020. "Optimum Location of Biomass Waste Residue Power Plant in Northern Region: Economic and Environmental Assessment," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 150-154.
    3. Lozano-García, Diego Fabián & Santibañez-Aguilar, José Ezequiel & Lozano, Francisco J. & Flores-Tlacuahuac, Antonio, 2020. "GIS-based modeling of residual biomass availability for energy and production in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Truong, An Ha & Ha-Duong, Minh & Tran, Hoang Anh, 2022. "Economics of co-firing rice straw in coal power plants in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Patrick Buchenberg & Thushara Addanki & David Franzmann & Christoph Winkler & Felix Lippkau & Thomas Hamacher & Philipp Kuhn & Heidi Heinrichs & Markus Blesl, 2023. "Global Potentials and Costs of Synfuels via Fischer–Tropsch Process," Energies, MDPI, vol. 16(4), pages 1-18, February.
    6. Moustakas, K. & Parmaxidou, P. & Vakalis, S., 2020. "Anaerobic digestion for energy production from agricultural biomass waste in Greece: Capacity assessment for the region of Thessaly," Energy, Elsevier, vol. 191(C).
    7. Ahyahudin Sodri & Fentinur Evida Septriana, 2022. "Biogas Power Generation from Palm Oil Mill Effluent (POME): Techno-Economic and Environmental Impact Evaluation," Energies, MDPI, vol. 15(19), pages 1-16, October.
    8. Zhanwu Wang & Guangyin Xu & Zhenfeng Wang & Zhiping Zhang, 2022. "Sustainability of agricultural waste power generation industry in China: criteria relationship identification and policy design mechanism," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3371-3395, March.
    9. Hao Zhang & Xuan Zhang & Yan Wang & Pengchu Bai & Kazuichi Hayakawa & Lulu Zhang & Ning Tang, 2022. "Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review," IJERPH, MDPI, vol. 19(7), pages 1-17, March.
    10. Shiraishi, Kenji & Shirley, Rebekah G. & Kammen, Daniel M., 2019. "Geospatial multi-criteria analysis for identifying high priority clean energy investment opportunities: A case study on land-use conflict in Bangladesh," Applied Energy, Elsevier, vol. 235(C), pages 1457-1467.
    11. Srikkanth Ramachandran & Kais Siala & Cristina de La Rúa & Tobias Massier & Arif Ahmed & Thomas Hamacher, 2021. "Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore," Energies, MDPI, vol. 14(21), pages 1-23, November.
    12. Thanarat Pratumwan & Warunee Tia & Adisak Nathakaranakule & Somchart Soponronnarit, 2022. "Grid-connected Electricity Generation Potential from Energy Crops: A Case Study of Marginal Land in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 62-72.
    13. Sani, L. & Khatiwada, D. & Harahap, F. & Silveira, S., 2021. "Decarbonization pathways for the power sector in Sumatra, Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    2. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.
    3. Nygaard, Ivan & Dembelé, Filifing & Daou, Ibrahima & Mariko, Adama & Kamissoko, Famakan & Coulibaly, Nanourou & Borgstrøm, Rasmus L. & Bruun, Thilde Beck, 2016. "Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 202-212.
    4. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    5. Ahmed, Tofael & Mekhilef, Saad & Shah, Rakibuzzaman & Mithulananthan, N. & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "ASEAN power grid: A secure transmission infrastructure for clean and sustainable energy for South-East Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1420-1435.
    6. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 621-632.
    7. Asamoah, Bernice & Nikiema, Josiane & Gebrezgabher, Solomie & Odonkor, Elsie & Njenga, M., 2016. "A review on production, marketing and use of fuel briquettes," IWMI Reports 257959, International Water Management Institute.
    8. Penwadee Cheewaphongphan & Agapol Junpen & Orachorn Kamnoet & Savitri Garivait, 2018. "Study on the Potential of Rice Straws as a Supplementary Fuel in Very Small Power Plants in Thailand," Energies, MDPI, vol. 11(2), pages 1-21, January.
    9. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    10. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    11. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.
    12. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    13. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    14. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    15. Francesco Tinti & Sara Kasmaee & Mohamed Elkarmoty & Stefano Bonduà & Villiam Bortolotti, 2018. "Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process," Energies, MDPI, vol. 11(2), pages 1-21, February.
    16. Maw Maw Tun & Dagmar Juchelková, 2019. "Biomass Sources and Energy Potential for Energy Sector in Myanmar: An Outlook," Resources, MDPI, vol. 8(2), pages 1-19, May.
    17. Eric, Aleksandar & Dakic, Dragoljub & Nemoda, Stevan & Komatina, Mirko & Repic, Branislav, 2012. "Experimental determination thermo physical characteristics of balled biomass," Energy, Elsevier, vol. 45(1), pages 350-357.
    18. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    19. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    20. Changbo Wang & Lixiao Zhang & Shuying Yang & Mingyue Pang, 2012. "A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China," Energies, MDPI, vol. 5(8), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:135:y:2017:i:c:p:930-942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.