IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v158y2021ics0301421521004018.html
   My bibliography  Save this article

Onshore wind farms GIS-Assisted suitability analysis using PROMETHEE II

Author

Listed:
  • Sotiropoulou, Kalliopi F.
  • Vavatsikos, Athanasios P.

Abstract

The increased use of renewable energy will reduce greenhouse gas emissions and comply with the European Union's commitment under the 2015 Paris Agreement on Climate Change. Wind energy generation contributes to the attainment of the Union's objectives because it is a mature and cost-effective national investment. Moreover, wind energy is part of the transition towards a circular economy primarily by producing clean renewable energy with a low environmental impact. The appropriate selection of both materials and sites is critical to ensure efficiency and low local impact. The selection of a wind farm installation site is a spatially complex decision-making problem that aims to evaluate alternative locations using planning and environmental restrictions. This paper introduces a new decision-making framework that combines geographic information systems (GIS) technology and PROMETHEE II, a multi-attribute decision making (MADM) method, to enable the GIS-assisted wind farm suitability analysis. The proposed framework can be used as a strategic planning tool that can help energy planners, wind developers, and decision and policy makers at the national and regional levels to accurately determine and predict the most efficient locations for wind farm development. The framework is illustrated through a case study of the Thrace region of north-eastern Greece.

Suggested Citation

  • Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P., 2021. "Onshore wind farms GIS-Assisted suitability analysis using PROMETHEE II," Energy Policy, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:enepol:v:158:y:2021:i:c:s0301421521004018
    DOI: 10.1016/j.enpol.2021.112531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521004018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertrand Mareschal & Jean Pierre Brans, 1994. "PROMCALC & GAIA: a new decision support system for multicriteria decision aid," ULB Institutional Repository 2013/9349, ULB -- Universite Libre de Bruxelles.
    2. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    3. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    4. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, September.
    5. van Haaren, Rob & Fthenakis, Vasilis, 2011. "GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3332-3340, September.
    6. Dragan Pamučar & Ljubomir Gigović & Zoran Bajić & Miljojko Janošević, 2017. "Location Selection for Wind Farms Using GIS Multi-Criteria Hybrid Model: An Approach Based on Fuzzy and Rough Numbers," Sustainability, MDPI, vol. 9(8), pages 1-23, July.
    7. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    8. Tsoutsos, T. & Tsitoura, I. & Kokologos, D. & Kalaitzakis, K., 2015. "Sustainable siting process in large wind farms case study in Crete," Renewable Energy, Elsevier, vol. 75(C), pages 474-480.
    9. Al-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Badi, Abdullah, 2012. "Wind farm land suitability indexing using multi-criteria analysis," Renewable Energy, Elsevier, vol. 44(C), pages 80-87.
    10. A. P. Vavatsikos & O. E. Demesouka & K. P. Anagnostopoulos, 2020. "GIS-based suitability analysis using fuzzy PROMETHEE," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(4), pages 604-628, March.
    11. Cunden, Tyagaraja S.M. & Doorga, Jay & Lollchund, Michel R. & Rughooputh, Soonil D.D.V., 2020. "Multi-level constraints wind farms siting for a complex terrain in a tropical region using MCDM approach coupled with GIS," Energy, Elsevier, vol. 211(C).
    12. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    13. Rodman, Laura C. & Meentemeyer, Ross K., 2006. "A geographic analysis of wind turbine placement in Northern California," Energy Policy, Elsevier, vol. 34(15), pages 2137-2149, October.
    14. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    15. Baban, Serwan M.J & Parry, Tim, 2001. "Developing and applying a GIS-assisted approach to locating wind farms in the UK," Renewable Energy, Elsevier, vol. 24(1), pages 59-71.
    16. Aydin, Nazli Yonca & Kentel, Elcin & Duzgun, Sebnem, 2010. "GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 364-373, January.
    17. Manfred M. Fischer & Peter Nijkamp (ed.), 2014. "Handbook of Regional Science," Springer Books, Springer, edition 127, number 978-3-642-23430-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athanasios P. Vavatsikos & Kalliopi F. Sotiropoulou & Veniamin Tzingizis, 2022. "GIS-assisted suitability analysis combining PROMETHEE II, analytic hierarchy process and inverse distance weighting," Operational Research, Springer, vol. 22(5), pages 5983-6006, November.
    2. Artur Amsharuk & Grażyna Łaska, 2022. "A Review: Existing Methods for Solving Spatial Planning Problems for Wind Turbines in Poland," Energies, MDPI, vol. 15(23), pages 1-20, November.
    3. Jaros{l}aw Wk{a}tr'obski & Aleksandra Bk{a}czkiewicz & Iga Rudawska, 2023. "A Strong Sustainability Paradigm Based Analytical Hierarchy Process (SSP-AHP) Method to Evaluate Sustainable Healthcare Systems," Papers 2306.00718, arXiv.org.
    4. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    5. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    6. Meysam Asadi & Kazem Pourhossein & Younes Noorollahi & Mousa Marzband & Gregorio Iglesias, 2023. "A New Decision Framework for Hybrid Solar and Wind Power Plant Site Selection Using Linear Regression Modeling Based on GIS-AHP," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    7. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.
    8. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    9. Venkatraman Indrajayanthan & Nalin Kant Mohanty & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2022. "Investigation on Current and Prospective Energy Transition Scenarios in Indian Landscape Using Integrated SWOT-MCDA Methodology," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    10. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    11. Albahri, O.S. & Alamoodi, A.H. & Deveci, Muhammet & Albahri, A.S. & Mahmoud, Moamin A. & Sharaf, Iman Mohamad & Coffman, D'Maris, 2023. "Multi-perspective evaluation of integrated active cooling systems using fuzzy decision making model," Energy Policy, Elsevier, vol. 182(C).
    12. Wątróbski, Jarosław & Bączkiewicz, Aleksandra & Sałabun, Wojciech, 2022. "New multi-criteria method for evaluation of sustainable RES management," Applied Energy, Elsevier, vol. 324(C).
    13. Artur Amsharuk & Grażyna Łaska, 2023. "The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland," Energies, MDPI, vol. 16(20), pages 1-24, October.
    14. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Aguayo, Mauricio & Casas-Ledón, Yannay, 2023. "Sustainable wind energy planning through ecosystem service impact valuation and exergy: A study case in south-central Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    2. Gigović, Ljubomir & Pamučar, Dragan & Božanić, Darko & Ljubojević, Srđan, 2017. "Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia," Renewable Energy, Elsevier, vol. 103(C), pages 501-521.
    3. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    4. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    5. Dragan Pamučar & Ljubomir Gigović & Zoran Bajić & Miljojko Janošević, 2017. "Location Selection for Wind Farms Using GIS Multi-Criteria Hybrid Model: An Approach Based on Fuzzy and Rough Numbers," Sustainability, MDPI, vol. 9(8), pages 1-23, July.
    6. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    7. Jangid, Jayant & Bera, Apurba Kumar & Joseph, Manoj & Singh, Vishal & Singh, T.P. & Pradhan, B.K. & Das, Sandipan, 2016. "Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1-10.
    8. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    9. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    10. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    11. Pilar Díaz-Cuevas, 2018. "GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain)," Energies, MDPI, vol. 11(10), pages 1-16, October.
    12. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    13. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).
    14. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    15. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    16. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    17. Hasan Eroğlu, 2021. "Multi-criteria decision analysis for wind power plant location selection based on fuzzy AHP and geographic information systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18278-18310, December.
    18. Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Jelokhani-Niaraki, Mohammadreza & Homaee, Mehdi & Nematollahi, Omid, 2022. "The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Rahim Moltames & Mohammad Sajad Naghavi & Mahyar Silakhori & Younes Noorollahi & Hossein Yousefi & Mostafa Hajiaghaei-Keshteli & Behzad Azizimehr, 2022. "Multi-Criteria Decision Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    20. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:158:y:2021:i:c:s0301421521004018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.