IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1839-d947028.html
   My bibliography  Save this article

Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France

Author

Listed:
  • Mohammed Ifkirne

    (Faculty of Geography and Planning, University of Strasbourg, 3, rue de l’Argonne, 67000 Strasbourg, France)

  • Houssam El Bouhi

    (Mathematics and Computer Science Research Training Unit, 7, rue René Descartes, 67084 Strasbourg, France)

  • Siham Acharki

    (Department of Earth Sciences, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, Tetouan 93000, Morocco)

  • Quoc Bao Pham

    (Institute of Applied Technology, Thu Dau Mot University, Thu Dau Mot 75000, Binh Duong Province, Vietnam)

  • Abdelouahed Farah

    (Remote Sensing Laboratory (2GRNT), Department of Geology, Geoscience, Geotourism, Natural Hazards, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP 2390, Marrakesh 40000, Morocco)

  • Nguyen Thi Thuy Linh

    (Institute of Applied Technology, Thu Dau Mot University, Thu Dau Mot 75000, Binh Duong Province, Vietnam)

Abstract

Wind energy is critical to traditional energy sources replacement in France and throughout the world. Wind energy generation in France is quite unevenly spread across the country. Despite its considerable wind potential, the research region is among the least productive. The region is a very complicated location where socio-environmental, technological, and topographical restrictions intersect, which is why energy production planning studies in this area have been delayed. In this research, the methodology used for identifying appropriate sites for future wind farms in this region combines GIS with MCDA approaches such as AHP. Six determining factors are selected: the average wind speed, which has a weight of 38%; the protected areas, which have a relative weight of 26%; the distance to electrical substations and road networks, both of which have a significant influence on relative weights of 13%; and finally, the slope and elevation, which have weights of 5% and 3%, respectively. Only one alternative was investigated (suitable and unsuitable). The spatial database was generated using ArcGIS and QGIS software; the AHP was computed using Excel; and several treatments, such as raster data categorization and weighted overlay, were automated using the Python programming language. The regions identified for wind turbines installation are defined by a total of 962,612 pixels, which cover a total of 651 km 2 and represent around 6.98% of the research area. The theoretical wind potential calculation results suggest that for at least one site with an area bigger than 400 ha, the energy output ranges between 182.60 and 280.20 MW. The planned sites appear to be suitable; each site can support an average installed capacity of 45 MW. This energy benefit will fulfill the region’s population’s transportation, heating, and electrical demands.

Suggested Citation

  • Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1839-:d:947028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    2. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    3. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
    4. Giamalaki, Marina & Tsoutsos, Theocharis, 2019. "Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach," Renewable Energy, Elsevier, vol. 141(C), pages 64-75.
    5. Hüseyin Akay, 2022. "Towards Linking the Sustainable Development Goals and a Novel-Proposed Snow Avalanche Susceptibility Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6205-6222, December.
    6. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    7. Patrick Criqui & Nikolaos Kouvaritakis, 2000. "World energy projections to 2030," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 116-136.
    8. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    9. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    10. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    11. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    12. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    13. Thomas L. Saaty & Luis G. Vargas, 2013. "The Analytic Network Process," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, edition 2, chapter 0, pages 1-40, Springer.
    14. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    15. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    16. Thomas L. Saaty & Luis G. Vargas, 2013. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-7279-7, March.
    17. Rui Meng & Lirong Zhang & Hongkuan Zang & Shichao Jin, 2021. "Evaluation of Environmental and Economic Integrated Benefits of Photovoltaic Poverty Alleviation Technology in the Sanjiangyuan Region of Qinghai Province," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    18. Amjad, Fahd & Shah, Liaqat Ali, 2020. "Identification and assessment of sites for solar farms development using GIS and density based clustering technique- A case of Pakistan," Renewable Energy, Elsevier, vol. 155(C), pages 761-769.
    19. Atici, Kazim Baris & Simsek, Ahmet Bahadir & Ulucan, Aydin & Tosun, Mustafa Umur, 2015. "A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection," Utilities Policy, Elsevier, vol. 37(C), pages 86-96.
    20. Tercan, Emre & Eymen, Abdurrahman & Urfalı, Tuğrul & Saracoglu, Burak Omer, 2021. "A sustainable framework for spatial planning of photovoltaic solar farms using GIS and multi-criteria assessment approach in Central Anatolia, Turkey," Land Use Policy, Elsevier, vol. 102(C).
    21. Anne A. Gharaibeh & Deema A. Al-Shboul & Abdulla M. Al-Rawabdeh & Rasheed A. Jaradat, 2021. "Establishing Regional Power Sustainability and Feasibility Using Wind Farm Land-Use Optimization," Land, MDPI, vol. 10(5), pages 1-32, April.
    22. Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P., 2021. "Onshore wind farms GIS-Assisted suitability analysis using PROMETHEE II," Energy Policy, Elsevier, vol. 158(C).
    23. Alireza Alinezhad & Javad Khalili, 2019. "New Methods and Applications in Multiple Attribute Decision Making (MADM)," International Series in Operations Research and Management Science, Springer, number 978-3-030-15009-9, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    2. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.
    3. Wang, Yongli & Tao, Siyi & Chen, Xin & Huang, Feifei & Xu, Xiaomin & Liu, Xiaoli & Liu, Yang & Liu, Lin, 2022. "Method multi-criteria decision-making method for site selection analysis and evaluation of urban integrated energy stations based on geographic information system," Renewable Energy, Elsevier, vol. 194(C), pages 273-292.
    4. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    5. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    6. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    7. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    8. Waewsak, Jompob & Ali, Shahid & Natee, Warut & Kongruang, Chuleerat & Chancham, Chana & Gagnon, Yves, 2020. "Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Dinçer, A.Ersin & Demir, A. & Yılmaz, K., 2023. "Enhancing wind turbine site selection through a novel wake penalty criterion," Energy, Elsevier, vol. 283(C).
    10. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    11. Nagababu, Garlapati & Puppala, Harish & Pritam, Kocherlakota & Kantipudi, MVV Prasad, 2022. "Two-stage GIS-MCDM based algorithm to identify plausible regions at micro level to install wind farms: A case study of India," Energy, Elsevier, vol. 248(C).
    12. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    13. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    14. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    15. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    16. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).
    17. Gkeka-Serpetsidaki, Pandora & Tsoutsos, Theocharis, 2022. "A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete," Energy, Elsevier, vol. 239(PD).
    18. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    19. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    20. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1839-:d:947028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.